ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10 GIF version

Theorem ax10 1705
Description: Rederivation of ax-10 1493 from original version ax-10o 1704. See Theorem ax10o 1703 for the derivation of ax-10o 1704 from ax-10 1493.

This theorem should not be referenced in any proof. Instead, use ax-10 1493 above so that uses of ax-10 1493 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

Assertion
Ref Expression
ax10 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem ax10
StepHypRef Expression
1 ax-10o 1704 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
21pm2.43i 49 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
3 equcomi 1692 . . 3 (𝑥 = 𝑦𝑦 = 𝑥)
43alimi 1443 . 2 (∀𝑦 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
52, 4syl 14 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518  ax-10o 1704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator