ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29r Unicode version

Theorem 19.29r 1609
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.29r  |-  ( ( E. x ph  /\  A. x ps )  ->  E. x ( ph  /\  ps ) )

Proof of Theorem 19.29r
StepHypRef Expression
1 19.29 1608 . 2  |-  ( ( A. x ps  /\  E. x ph )  ->  E. x ( ps  /\  ph ) )
2 ancom 264 . 2  |-  ( ( E. x ph  /\  A. x ps )  <->  ( A. x ps  /\  E. x ph ) )
3 exancom 1596 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
41, 2, 33imtr4i 200 1  |-  ( ( E. x ph  /\  A. x ps )  ->  E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.29r2  1610  19.29x  1611  exan  1681  ax9o  1686  equvini  1746  eu2  2058  intab  3853  imadiflem  5267  bj-inex  13789
  Copyright terms: Public domain W3C validator