ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29r Unicode version

Theorem 19.29r 1635
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.29r  |-  ( ( E. x ph  /\  A. x ps )  ->  E. x ( ph  /\  ps ) )

Proof of Theorem 19.29r
StepHypRef Expression
1 19.29 1634 . 2  |-  ( ( A. x ps  /\  E. x ph )  ->  E. x ( ps  /\  ph ) )
2 ancom 266 . 2  |-  ( ( E. x ph  /\  A. x ps )  <->  ( A. x ps  /\  E. x ph ) )
3 exancom 1622 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
41, 2, 33imtr4i 201 1  |-  ( ( E. x ph  /\  A. x ps )  ->  E. x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r2  1636  19.29x  1637  exan  1707  ax9o  1712  equvini  1772  eu2  2089  intab  3903  imadiflem  5337  bj-inex  15553
  Copyright terms: Public domain W3C validator