| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceq | Unicode version | ||
| Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdceq.1 |
|
| Ref | Expression |
|---|---|
| bdceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdceq.1 |
. . . . 5
| |
| 2 | 1 | eleq2i 2263 |
. . . 4
|
| 3 | 2 | bdeq 15469 |
. . 3
|
| 4 | 3 | albii 1484 |
. 2
|
| 5 | df-bdc 15487 |
. 2
| |
| 6 | df-bdc 15487 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15459 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-bdc 15487 |
| This theorem is referenced by: bdceqi 15489 |
| Copyright terms: Public domain | W3C validator |