Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceq Unicode version

Theorem bdceq 11377
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdceq.1  |-  A  =  B
Assertion
Ref Expression
bdceq  |-  (BOUNDED  A  <-> BOUNDED  B )

Proof of Theorem bdceq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdceq.1 . . . . 5  |-  A  =  B
21eleq2i 2154 . . . 4  |-  ( x  e.  A  <->  x  e.  B )
32bdeq 11358 . . 3  |-  (BOUNDED  x  e.  A  <-> BOUNDED  x  e.  B )
43albii 1404 . 2  |-  ( A. xBOUNDED  x  e.  A  <->  A. xBOUNDED  x  e.  B )
5 df-bdc 11376 . 2  |-  (BOUNDED  A  <->  A. xBOUNDED  x  e.  A )
6 df-bdc 11376 . 2  |-  (BOUNDED  B  <->  A. xBOUNDED  x  e.  B )
74, 5, 63bitr4i 210 1  |-  (BOUNDED  A  <-> BOUNDED  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438  BOUNDED wbd 11347  BOUNDED wbdc 11375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-ext 2070  ax-bd0 11348
This theorem depends on definitions:  df-bi 115  df-cleq 2081  df-clel 2084  df-bdc 11376
This theorem is referenced by:  bdceqi  11378
  Copyright terms: Public domain W3C validator