Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi Unicode version

Theorem bdceqi 13878
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2152. See also bdceqir 13879. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min  |- BOUNDED  A
bdceqi.maj  |-  A  =  B
Assertion
Ref Expression
bdceqi  |- BOUNDED  B

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2  |- BOUNDED  A
2 bdceqi.maj . . 3  |-  A  =  B
32bdceq 13877 . 2  |-  (BOUNDED  A  <-> BOUNDED  B )
41, 3mpbi 144 1  |- BOUNDED  B
Colors of variables: wff set class
Syntax hints:    = wceq 1348  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-bdc 13876
This theorem is referenced by:  bdceqir  13879  bds  13886  bdcuni  13911
  Copyright terms: Public domain W3C validator