Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi Unicode version

Theorem bdceqi 15978
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2189. See also bdceqir 15979. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min  |- BOUNDED  A
bdceqi.maj  |-  A  =  B
Assertion
Ref Expression
bdceqi  |- BOUNDED  B

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2  |- BOUNDED  A
2 bdceqi.maj . . 3  |-  A  =  B
32bdceq 15977 . 2  |-  (BOUNDED  A  <-> BOUNDED  B )
41, 3mpbi 145 1  |- BOUNDED  B
Colors of variables: wff set class
Syntax hints:    = wceq 1373  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203  df-bdc 15976
This theorem is referenced by:  bdceqir  15979  bds  15986  bdcuni  16011
  Copyright terms: Public domain W3C validator