![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqi | Unicode version |
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2159. See also bdceqir 14456. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdceqi.min |
![]() ![]() |
bdceqi.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqi |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqi.min |
. 2
![]() ![]() | |
2 | bdceqi.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | bdceq 14454 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbi 145 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14425 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-bdc 14453 |
This theorem is referenced by: bdceqir 14456 bds 14463 bdcuni 14488 |
Copyright terms: Public domain | W3C validator |