Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi GIF version

Theorem bdceqi 15643
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2186. See also bdceqir 15644. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min BOUNDED 𝐴
bdceqi.maj 𝐴 = 𝐵
Assertion
Ref Expression
bdceqi BOUNDED 𝐵

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2 BOUNDED 𝐴
2 bdceqi.maj . . 3 𝐴 = 𝐵
32bdceq 15642 . 2 (BOUNDED 𝐴BOUNDED 𝐵)
41, 3mpbi 145 1 BOUNDED 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  BOUNDED wbdc 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-bd0 15613
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200  df-bdc 15641
This theorem is referenced by:  bdceqir  15644  bds  15651  bdcuni  15676
  Copyright terms: Public domain W3C validator