Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi GIF version

Theorem bdceqi 14598
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2159. See also bdceqir 14599. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min BOUNDED 𝐴
bdceqi.maj 𝐴 = 𝐵
Assertion
Ref Expression
bdceqi BOUNDED 𝐵

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2 BOUNDED 𝐴
2 bdceqi.maj . . 3 𝐴 = 𝐵
32bdceq 14597 . 2 (BOUNDED 𝐴BOUNDED 𝐵)
41, 3mpbi 145 1 BOUNDED 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  BOUNDED wbdc 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159  ax-bd0 14568
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173  df-bdc 14596
This theorem is referenced by:  bdceqir  14599  bds  14606  bdcuni  14631
  Copyright terms: Public domain W3C validator