Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi GIF version

Theorem bdceqi 13725
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2147. See also bdceqir 13726. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min BOUNDED 𝐴
bdceqi.maj 𝐴 = 𝐵
Assertion
Ref Expression
bdceqi BOUNDED 𝐵

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2 BOUNDED 𝐴
2 bdceqi.maj . . 3 𝐴 = 𝐵
32bdceq 13724 . 2 (BOUNDED 𝐴BOUNDED 𝐵)
41, 3mpbi 144 1 BOUNDED 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1343  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-bdc 13723
This theorem is referenced by:  bdceqir  13726  bds  13733  bdcuni  13758
  Copyright terms: Public domain W3C validator