Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqi GIF version

Theorem bdceqi 15280
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2175. See also bdceqir 15281. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqi.min BOUNDED 𝐴
bdceqi.maj 𝐴 = 𝐵
Assertion
Ref Expression
bdceqi BOUNDED 𝐵

Proof of Theorem bdceqi
StepHypRef Expression
1 bdceqi.min . 2 BOUNDED 𝐴
2 bdceqi.maj . . 3 𝐴 = 𝐵
32bdceq 15279 . 2 (BOUNDED 𝐴BOUNDED 𝐵)
41, 3mpbi 145 1 BOUNDED 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  BOUNDED wbdc 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15250
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-bdc 15278
This theorem is referenced by:  bdceqir  15281  bds  15288  bdcuni  15313
  Copyright terms: Public domain W3C validator