Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcuni Unicode version

Theorem bdcuni 15428
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
Assertion
Ref Expression
bdcuni  |- BOUNDED 
U. x

Proof of Theorem bdcuni
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15373 . . . . 5  |- BOUNDED  y  e.  z
21ax-bdex 15371 . . . 4  |- BOUNDED  E. z  e.  x  y  e.  z
32bdcab 15401 . . 3  |- BOUNDED  { y  |  E. z  e.  x  y  e.  z }
4 df-rex 2478 . . . . 5  |-  ( E. z  e.  x  y  e.  z  <->  E. z
( z  e.  x  /\  y  e.  z
) )
5 exancom 1619 . . . . 5  |-  ( E. z ( z  e.  x  /\  y  e.  z )  <->  E. z
( y  e.  z  /\  z  e.  x
) )
64, 5bitri 184 . . . 4  |-  ( E. z  e.  x  y  e.  z  <->  E. z
( y  e.  z  /\  z  e.  x
) )
76abbii 2309 . . 3  |-  { y  |  E. z  e.  x  y  e.  z }  =  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
83, 7bdceqi 15395 . 2  |- BOUNDED  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
9 df-uni 3837 . 2  |-  U. x  =  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
108, 9bdceqir 15396 1  |- BOUNDED 
U. x
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1503   {cab 2179   E.wrex 2473   U.cuni 3836  BOUNDED wbdc 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15365  ax-bdex 15371  ax-bdel 15373  ax-bdsb 15374
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-rex 2478  df-uni 3837  df-bdc 15393
This theorem is referenced by:  bj-uniex2  15468
  Copyright terms: Public domain W3C validator