Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcuni | Unicode version |
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
Ref | Expression |
---|---|
bdcuni | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 13334 | . . . . 5 BOUNDED | |
2 | 1 | ax-bdex 13332 | . . . 4 BOUNDED |
3 | 2 | bdcab 13362 | . . 3 BOUNDED |
4 | df-rex 2438 | . . . . 5 | |
5 | exancom 1585 | . . . . 5 | |
6 | 4, 5 | bitri 183 | . . . 4 |
7 | 6 | abbii 2270 | . . 3 |
8 | 3, 7 | bdceqi 13356 | . 2 BOUNDED |
9 | df-uni 3769 | . 2 | |
10 | 8, 9 | bdceqir 13357 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wa 103 wex 1469 cab 2140 wrex 2433 cuni 3768 BOUNDED wbdc 13353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-bd0 13326 ax-bdex 13332 ax-bdel 13334 ax-bdsb 13335 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-rex 2438 df-uni 3769 df-bdc 13354 |
This theorem is referenced by: bj-uniex2 13429 |
Copyright terms: Public domain | W3C validator |