Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcuni Unicode version

Theorem bdcuni 13389
Description: The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
Assertion
Ref Expression
bdcuni  |- BOUNDED 
U. x

Proof of Theorem bdcuni
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 13334 . . . . 5  |- BOUNDED  y  e.  z
21ax-bdex 13332 . . . 4  |- BOUNDED  E. z  e.  x  y  e.  z
32bdcab 13362 . . 3  |- BOUNDED  { y  |  E. z  e.  x  y  e.  z }
4 df-rex 2438 . . . . 5  |-  ( E. z  e.  x  y  e.  z  <->  E. z
( z  e.  x  /\  y  e.  z
) )
5 exancom 1585 . . . . 5  |-  ( E. z ( z  e.  x  /\  y  e.  z )  <->  E. z
( y  e.  z  /\  z  e.  x
) )
64, 5bitri 183 . . . 4  |-  ( E. z  e.  x  y  e.  z  <->  E. z
( y  e.  z  /\  z  e.  x
) )
76abbii 2270 . . 3  |-  { y  |  E. z  e.  x  y  e.  z }  =  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
83, 7bdceqi 13356 . 2  |- BOUNDED  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
9 df-uni 3769 . 2  |-  U. x  =  { y  |  E. z ( y  e.  z  /\  z  e.  x ) }
108, 9bdceqir 13357 1  |- BOUNDED 
U. x
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1469   {cab 2140   E.wrex 2433   U.cuni 3768  BOUNDED wbdc 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-bd0 13326  ax-bdex 13332  ax-bdel 13334  ax-bdsb 13335
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-rex 2438  df-uni 3769  df-bdc 13354
This theorem is referenced by:  bj-uniex2  13429
  Copyright terms: Public domain W3C validator