| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | Unicode version | ||
| Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 15957; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 15957. (Contributed by BJ, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| bds.bd |
|
| bds.1 |
|
| Ref | Expression |
|---|---|
| bds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bds.bd |
. . . 4
| |
| 2 | 1 | bdcab 15984 |
. . 3
|
| 3 | bds.1 |
. . . 4
| |
| 4 | 3 | cbvabv 2332 |
. . 3
|
| 5 | 2, 4 | bdceqi 15978 |
. 2
|
| 6 | 5 | bdph 15985 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-bd0 15948 ax-bdsb 15957 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-bdc 15976 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |