| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | Unicode version | ||
| Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 16143; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 16143. (Contributed by BJ, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| bds.bd |
|
| bds.1 |
|
| Ref | Expression |
|---|---|
| bds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bds.bd |
. . . 4
| |
| 2 | 1 | bdcab 16170 |
. . 3
|
| 3 | bds.1 |
. . . 4
| |
| 4 | 3 | cbvabv 2354 |
. . 3
|
| 5 | 2, 4 | bdceqi 16164 |
. 2
|
| 6 | 5 | bdph 16171 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16134 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-bdc 16162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |