| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | Unicode version | ||
| Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 15758; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 15758. (Contributed by BJ, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| bds.bd |
|
| bds.1 |
|
| Ref | Expression |
|---|---|
| bds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bds.bd |
. . . 4
| |
| 2 | 1 | bdcab 15785 |
. . 3
|
| 3 | bds.1 |
. . . 4
| |
| 4 | 3 | cbvabv 2330 |
. . 3
|
| 5 | 2, 4 | bdceqi 15779 |
. 2
|
| 6 | 5 | bdph 15786 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-bd0 15749 ax-bdsb 15758 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-bdc 15777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |