Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds Unicode version

Theorem bds 15497
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 15468; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 15468. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd  |- BOUNDED  ph
bds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
bds  |- BOUNDED  ps
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4  |- BOUNDED  ph
21bdcab 15495 . . 3  |- BOUNDED  { x  |  ph }
3 bds.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
43cbvabv 2321 . . 3  |-  { x  |  ph }  =  {
y  |  ps }
52, 4bdceqi 15489 . 2  |- BOUNDED  { y  |  ps }
65bdph 15496 1  |- BOUNDED  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   {cab 2182  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator