Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds Unicode version

Theorem bds 13693
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 13664; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 13664. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd  |- BOUNDED  ph
bds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
bds  |- BOUNDED  ps
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4  |- BOUNDED  ph
21bdcab 13691 . . 3  |- BOUNDED  { x  |  ph }
3 bds.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
43cbvabv 2290 . . 3  |-  { x  |  ph }  =  {
y  |  ps }
52, 4bdceqi 13685 . 2  |- BOUNDED  { y  |  ps }
65bdph 13692 1  |- BOUNDED  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   {cab 2151  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13655  ax-bdsb 13664
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-bdc 13683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator