Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqir Unicode version

Theorem bdceqir 13619
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 13618) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 13600). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqir.min  |- BOUNDED  A
bdceqir.maj  |-  B  =  A
Assertion
Ref Expression
bdceqir  |- BOUNDED  B

Proof of Theorem bdceqir
StepHypRef Expression
1 bdceqir.min . 2  |- BOUNDED  A
2 bdceqir.maj . . 3  |-  B  =  A
32eqcomi 2168 . 2  |-  A  =  B
41, 3bdceqi 13618 1  |- BOUNDED  B
Colors of variables: wff set class
Syntax hints:    = wceq 1342  BOUNDED wbdc 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-4 1497  ax-17 1513  ax-ial 1521  ax-ext 2146  ax-bd0 13588
This theorem depends on definitions:  df-bi 116  df-cleq 2157  df-clel 2160  df-bdc 13616
This theorem is referenced by:  bdcrab  13627  bdccsb  13635  bdcdif  13636  bdcun  13637  bdcin  13638  bdcnulALT  13641  bdcpw  13644  bdcsn  13645  bdcpr  13646  bdctp  13647  bdcuni  13651  bdcint  13652  bdciun  13653  bdciin  13654  bdcsuc  13655  bdcriota  13658
  Copyright terms: Public domain W3C validator