![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 14634) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2181 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 14634 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14604 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-bdc 14632 |
This theorem is referenced by: bdcrab 14643 bdccsb 14651 bdcdif 14652 bdcun 14653 bdcin 14654 bdcnulALT 14657 bdcpw 14660 bdcsn 14661 bdcpr 14662 bdctp 14663 bdcuni 14667 bdcint 14668 bdciun 14669 bdciin 14670 bdcsuc 14671 bdcriota 14674 |
Copyright terms: Public domain | W3C validator |