| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version | ||
| Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 15783) equality in the hypothesis, to work better
with definitions ( |
| Ref | Expression |
|---|---|
| bdceqir.min |
|
| bdceqir.maj |
|
| Ref | Expression |
|---|---|
| bdceqir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdceqir.min |
. 2
| |
| 2 | bdceqir.maj |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | bdceqi 15783 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-bd0 15753 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-bdc 15781 |
| This theorem is referenced by: bdcrab 15792 bdccsb 15800 bdcdif 15801 bdcun 15802 bdcin 15803 bdcnulALT 15806 bdcpw 15809 bdcsn 15810 bdcpr 15811 bdctp 15812 bdcuni 15816 bdcint 15817 bdciun 15818 bdciin 15819 bdcsuc 15820 bdcriota 15823 |
| Copyright terms: Public domain | W3C validator |