Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqir Unicode version

Theorem bdceqir 15574
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 15573) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 15555). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqir.min  |- BOUNDED  A
bdceqir.maj  |-  B  =  A
Assertion
Ref Expression
bdceqir  |- BOUNDED  B

Proof of Theorem bdceqir
StepHypRef Expression
1 bdceqir.min . 2  |- BOUNDED  A
2 bdceqir.maj . . 3  |-  B  =  A
32eqcomi 2200 . 2  |-  A  =  B
41, 3bdceqi 15573 1  |- BOUNDED  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364  BOUNDED wbdc 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15543
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-bdc 15571
This theorem is referenced by:  bdcrab  15582  bdccsb  15590  bdcdif  15591  bdcun  15592  bdcin  15593  bdcnulALT  15596  bdcpw  15599  bdcsn  15600  bdcpr  15601  bdctp  15602  bdcuni  15606  bdcint  15607  bdciun  15608  bdciin  15609  bdcsuc  15610  bdcriota  15613
  Copyright terms: Public domain W3C validator