![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 14822) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2191 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 14822 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 ax-bd0 14792 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 df-bdc 14820 |
This theorem is referenced by: bdcrab 14831 bdccsb 14839 bdcdif 14840 bdcun 14841 bdcin 14842 bdcnulALT 14845 bdcpw 14848 bdcsn 14849 bdcpr 14850 bdctp 14851 bdcuni 14855 bdcint 14856 bdciun 14857 bdciin 14858 bdcsuc 14859 bdcriota 14862 |
Copyright terms: Public domain | W3C validator |