Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqir Unicode version

Theorem bdceqir 14823
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 14822) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 14804). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqir.min  |- BOUNDED  A
bdceqir.maj  |-  B  =  A
Assertion
Ref Expression
bdceqir  |- BOUNDED  B

Proof of Theorem bdceqir
StepHypRef Expression
1 bdceqir.min . 2  |- BOUNDED  A
2 bdceqir.maj . . 3  |-  B  =  A
32eqcomi 2191 . 2  |-  A  =  B
41, 3bdceqi 14822 1  |- BOUNDED  B
Colors of variables: wff set class
Syntax hints:    = wceq 1363  BOUNDED wbdc 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2169  ax-bd0 14792
This theorem depends on definitions:  df-bi 117  df-cleq 2180  df-clel 2183  df-bdc 14820
This theorem is referenced by:  bdcrab  14831  bdccsb  14839  bdcdif  14840  bdcun  14841  bdcin  14842  bdcnulALT  14845  bdcpw  14848  bdcsn  14849  bdcpr  14850  bdctp  14851  bdcuni  14855  bdcint  14856  bdciun  14857  bdciin  14858  bdcsuc  14859  bdcriota  14862
  Copyright terms: Public domain W3C validator