![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 15048) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2193 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 15048 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 ax-bd0 15018 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-clel 2185 df-bdc 15046 |
This theorem is referenced by: bdcrab 15057 bdccsb 15065 bdcdif 15066 bdcun 15067 bdcin 15068 bdcnulALT 15071 bdcpw 15074 bdcsn 15075 bdcpr 15076 bdctp 15077 bdcuni 15081 bdcint 15082 bdciun 15083 bdciin 15084 bdcsuc 15085 bdcriota 15088 |
Copyright terms: Public domain | W3C validator |