| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version | ||
| Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 15816) equality in the hypothesis, to work better
with definitions ( |
| Ref | Expression |
|---|---|
| bdceqir.min |
|
| bdceqir.maj |
|
| Ref | Expression |
|---|---|
| bdceqir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdceqir.min |
. 2
| |
| 2 | bdceqir.maj |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | bdceqi 15816 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-bd0 15786 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-bdc 15814 |
| This theorem is referenced by: bdcrab 15825 bdccsb 15833 bdcdif 15834 bdcun 15835 bdcin 15836 bdcnulALT 15839 bdcpw 15842 bdcsn 15843 bdcpr 15844 bdctp 15845 bdcuni 15849 bdcint 15850 bdciun 15851 bdciin 15852 bdcsuc 15853 bdcriota 15856 |
| Copyright terms: Public domain | W3C validator |