| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version | ||
| Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 15573) equality in the hypothesis, to work better
with definitions ( |
| Ref | Expression |
|---|---|
| bdceqir.min |
|
| bdceqir.maj |
|
| Ref | Expression |
|---|---|
| bdceqir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdceqir.min |
. 2
| |
| 2 | bdceqir.maj |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | bdceqi 15573 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15543 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-bdc 15571 |
| This theorem is referenced by: bdcrab 15582 bdccsb 15590 bdcdif 15591 bdcun 15592 bdcin 15593 bdcnulALT 15596 bdcpw 15599 bdcsn 15600 bdcpr 15601 bdctp 15602 bdcuni 15606 bdcint 15607 bdciun 15608 bdciin 15609 bdcsuc 15610 bdcriota 15613 |
| Copyright terms: Public domain | W3C validator |