![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 14992) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2193 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 14992 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 ax-bd0 14962 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-clel 2185 df-bdc 14990 |
This theorem is referenced by: bdcrab 15001 bdccsb 15009 bdcdif 15010 bdcun 15011 bdcin 15012 bdcnulALT 15015 bdcpw 15018 bdcsn 15019 bdcpr 15020 bdctp 15021 bdcuni 15025 bdcint 15026 bdciun 15027 bdciin 15028 bdcsuc 15029 bdcriota 15032 |
Copyright terms: Public domain | W3C validator |