| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version | ||
| Description: A class equal to a
bounded one is bounded.  Stated with a commuted
       (compared with bdceqi 15489) equality in the hypothesis, to work better
       with definitions ( | 
| Ref | Expression | 
|---|---|
| bdceqir.min | 
 | 
| bdceqir.maj | 
 | 
| Ref | Expression | 
|---|---|
| bdceqir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdceqir.min | 
. 2
 | |
| 2 | bdceqir.maj | 
. . 3
 | |
| 3 | 2 | eqcomi 2200 | 
. 2
 | 
| 4 | 1, 3 | bdceqi 15489 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15459 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-bdc 15487 | 
| This theorem is referenced by: bdcrab 15498 bdccsb 15506 bdcdif 15507 bdcun 15508 bdcin 15509 bdcnulALT 15512 bdcpw 15515 bdcsn 15516 bdcpr 15517 bdctp 15518 bdcuni 15522 bdcint 15523 bdciun 15524 bdciin 15525 bdcsuc 15526 bdcriota 15529 | 
| Copyright terms: Public domain | W3C validator |