Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT Unicode version

Theorem bdcnulALT 15806
Description: Alternate proof of bdcnul 15805. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15784, or use the corresponding characterizations of its elements followed by bdelir 15787. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT  |- BOUNDED  (/)

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 15797 . . 3  |- BOUNDED  _V
21, 1bdcdif 15801 . 2  |- BOUNDED  ( _V  \  _V )
3 df-nul 3461 . 2  |-  (/)  =  ( _V  \  _V )
42, 3bdceqir 15784 1  |- BOUNDED  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2772    \ cdif 3163   (/)c0 3460  BOUNDED wbdc 15780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187  ax-bd0 15753  ax-bdim 15754  ax-bdan 15755  ax-bdn 15757  ax-bdeq 15760  ax-bdsb 15762
This theorem depends on definitions:  df-bi 117  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774  df-dif 3168  df-nul 3461  df-bdc 15781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator