Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT Unicode version

Theorem bdcnulALT 16001
Description: Alternate proof of bdcnul 16000. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15979, or use the corresponding characterizations of its elements followed by bdelir 15982. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT  |- BOUNDED  (/)

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 15992 . . 3  |- BOUNDED  _V
21, 1bdcdif 15996 . 2  |- BOUNDED  ( _V  \  _V )
3 df-nul 3469 . 2  |-  (/)  =  ( _V  \  _V )
42, 3bdceqir 15979 1  |- BOUNDED  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2776    \ cdif 3171   (/)c0 3468  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdan 15950  ax-bdn 15952  ax-bdeq 15955  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-dif 3176  df-nul 3469  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator