![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnulALT | Unicode version |
Description: Alternate proof of bdcnul 14757. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 14736, or use the corresponding characterizations of its elements followed by bdelir 14739. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdcnulALT |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcvv 14749 |
. . 3
![]() ![]() | |
2 | 1, 1 | bdcdif 14753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-nul 3425 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bdceqir 14736 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 ax-bd0 14705 ax-bdim 14706 ax-bdan 14707 ax-bdn 14709 ax-bdeq 14712 ax-bdsb 14714 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 df-dif 3133 df-nul 3425 df-bdc 14733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |