| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnulALT | Unicode version | ||
| Description: Alternate proof of bdcnul 16000. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15979, or use the corresponding characterizations of its elements followed by bdelir 15982. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bdcnulALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcvv 15992 |
. . 3
| |
| 2 | 1, 1 | bdcdif 15996 |
. 2
|
| 3 | df-nul 3469 |
. 2
| |
| 4 | 2, 3 | bdceqir 15979 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 ax-bd0 15948 ax-bdim 15949 ax-bdan 15950 ax-bdn 15952 ax-bdeq 15955 ax-bdsb 15957 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-dif 3176 df-nul 3469 df-bdc 15976 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |