Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT Unicode version

Theorem bdcnulALT 15512
Description: Alternate proof of bdcnul 15511. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15490, or use the corresponding characterizations of its elements followed by bdelir 15493. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT  |- BOUNDED  (/)

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 15503 . . 3  |- BOUNDED  _V
21, 1bdcdif 15507 . 2  |- BOUNDED  ( _V  \  _V )
3 df-nul 3451 . 2  |-  (/)  =  ( _V  \  _V )
42, 3bdceqir 15490 1  |- BOUNDED  (/)
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    \ cdif 3154   (/)c0 3450  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdim 15460  ax-bdan 15461  ax-bdn 15463  ax-bdeq 15466  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-dif 3159  df-nul 3451  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator