| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biadanid | Unicode version | ||
| Description: Deduction associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| biadanid.1 |
|
| biadanid.2 |
|
| Ref | Expression |
|---|---|
| biadanid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanid.1 |
. . 3
| |
| 2 | biadanid.2 |
. . . . . 6
| |
| 3 | 2 | biimpa 296 |
. . . . 5
|
| 4 | 3 | an32s 568 |
. . . 4
|
| 5 | 1, 4 | mpdan 421 |
. . 3
|
| 6 | 1, 5 | jca 306 |
. 2
|
| 7 | 2 | biimpar 297 |
. . 3
|
| 8 | 7 | anasss 399 |
. 2
|
| 9 | 6, 8 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dflidl2 14044 df2idl2 14065 |
| Copyright terms: Public domain | W3C validator |