ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadanid Unicode version

Theorem biadanid 614
Description: Deduction associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
biadanid.1  |-  ( (
ph  /\  ps )  ->  ch )
biadanid.2  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
Assertion
Ref Expression
biadanid  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )

Proof of Theorem biadanid
StepHypRef Expression
1 biadanid.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
2 biadanid.2 . . . . . 6  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
32biimpa 296 . . . . 5  |-  ( ( ( ph  /\  ch )  /\  ps )  ->  th )
43an32s 568 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
51, 4mpdan 421 . . 3  |-  ( (
ph  /\  ps )  ->  th )
61, 5jca 306 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  /\  th ) )
72biimpar 297 . . 3  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ps )
87anasss 399 . 2  |-  ( (
ph  /\  ( ch  /\ 
th ) )  ->  ps )
96, 8impbida 596 1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dflidl2  13804  df2idl2  13824
  Copyright terms: Public domain W3C validator