| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2225 opabss 4124 euotd 4317 wetriext 4643 sosng 4766 xpsspw 4805 brcogw 4865 funimaexglem 5376 funfni 5395 fnco 5403 fnssres 5408 fn0 5415 fnimadisj 5416 fnimaeq0 5417 foco 5531 foimacnv 5562 fvelimab 5658 fvopab3ig 5676 dff3im 5748 dffo4 5751 fmptco 5769 f1eqcocnv 5883 f1ocnv2d 6173 fnexALT 6219 xp1st 6274 xp2nd 6275 tfrlemiubacc 6439 tfri2d 6445 tfr1onlemubacc 6455 tfrcllemubacc 6468 tfri3 6476 ecelqsg 6698 elqsn0m 6713 fidifsnen 6993 pr1or2 7328 recclnq 7540 nq0a0 7605 qreccl 9798 difelfzle 10291 exfzdc 10406 zsupcllemstep 10409 modifeq2int 10568 frec2uzlt2d 10586 zzlesq 10890 1elfz0hash 10988 lennncl 11051 wrdsymb0 11063 ccatsymb 11096 ccatlid 11100 ccatass 11102 ccatswrd 11161 swrdccat2 11162 ccatpfx 11192 swrdccatfn 11215 swrdccat 11226 caucvgrelemcau 11406 recvalap 11523 fzomaxdiflem 11538 2zsupmax 11652 2zinfmin 11669 fsumparts 11896 ntrivcvgap 11974 fsumdvds 12268 divconjdvds 12275 ndvdssub 12356 rplpwr 12463 dvdssqlem 12466 eucalgcvga 12495 mulgcddvds 12531 isprm2lem 12553 powm2modprm 12690 coprimeprodsq 12695 pythagtriplem11 12712 pythagtriplem13 12714 pcadd2 12779 4sqlem11 12839 grpidd 13330 ismndd 13384 gsumfzz 13442 gsumwmhm 13445 mulgaddcom 13597 resghm 13711 conjnsg 13732 isrngd 13830 isringd 13918 01eq0ring 14066 lspsneq0b 14304 lmodindp1 14305 znf1o 14528 psrgrp 14562 uniopn 14588 ntrval 14697 clsval 14698 neival 14730 restdis 14771 lmbrf 14802 cnpnei 14806 dviaddf 15292 dvimulf 15293 logbgt0b 15553 perfectlem2 15587 lgslem4 15595 lgsmod 15618 lgsdir2lem2 15621 lgsdir2 15625 lgsne0 15630 lgsmulsqcoprm 15638 lgseisenlem1 15662 2lgsoddprm 15705 2sqlem4 15710 |
| Copyright terms: Public domain | W3C validator |