Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
Ref | Expression |
---|---|
biimpar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 | |
2 | 1 | biimprd 157 | . 2 |
3 | 2 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exbiri 380 bitr 464 eqtr 2175 opabss 4028 euotd 4213 wetriext 4534 sosng 4656 xpsspw 4695 brcogw 4752 funimaexglem 5250 funfni 5267 fnco 5275 fnssres 5280 fn0 5286 fnimadisj 5287 fnimaeq0 5288 foco 5399 foimacnv 5429 fvelimab 5521 fvopab3ig 5539 dff3im 5609 dffo4 5612 fmptco 5630 f1eqcocnv 5736 f1ocnv2d 6018 fnexALT 6055 xp1st 6107 xp2nd 6108 tfrlemiubacc 6271 tfri2d 6277 tfr1onlemubacc 6287 tfrcllemubacc 6300 tfri3 6308 ecelqsg 6526 elqsn0m 6541 fidifsnen 6808 recclnq 7295 nq0a0 7360 qreccl 9533 difelfzle 10015 exfzdc 10121 modifeq2int 10267 frec2uzlt2d 10285 1elfz0hash 10662 caucvgrelemcau 10862 recvalap 10979 fzomaxdiflem 10994 2zsupmax 11107 fsumparts 11349 ntrivcvgap 11427 divconjdvds 11722 ndvdssub 11802 zsupcllemstep 11813 rplpwr 11891 dvdssqlem 11894 eucalgcvga 11915 mulgcddvds 11951 isprm2lem 11973 uniopn 12359 ntrval 12470 clsval 12471 neival 12503 restdis 12544 lmbrf 12575 cnpnei 12579 dviaddf 13029 dvimulf 13030 logbgt0b 13243 |
Copyright terms: Public domain | W3C validator |