![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpar |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exbiri 382 bitr 472 eqtr 2195 opabss 4068 euotd 4255 wetriext 4577 sosng 4700 xpsspw 4739 brcogw 4797 funimaexglem 5300 funfni 5317 fnco 5325 fnssres 5330 fn0 5336 fnimadisj 5337 fnimaeq0 5338 foco 5449 foimacnv 5480 fvelimab 5573 fvopab3ig 5591 dff3im 5662 dffo4 5665 fmptco 5683 f1eqcocnv 5792 f1ocnv2d 6075 fnexALT 6112 xp1st 6166 xp2nd 6167 tfrlemiubacc 6331 tfri2d 6337 tfr1onlemubacc 6347 tfrcllemubacc 6360 tfri3 6368 ecelqsg 6588 elqsn0m 6603 fidifsnen 6870 recclnq 7391 nq0a0 7456 qreccl 9642 difelfzle 10134 exfzdc 10240 modifeq2int 10386 frec2uzlt2d 10404 1elfz0hash 10786 caucvgrelemcau 10989 recvalap 11106 fzomaxdiflem 11121 2zsupmax 11234 2zinfmin 11251 fsumparts 11478 ntrivcvgap 11556 divconjdvds 11855 ndvdssub 11935 zsupcllemstep 11946 rplpwr 12028 dvdssqlem 12031 eucalgcvga 12058 mulgcddvds 12094 isprm2lem 12116 powm2modprm 12252 coprimeprodsq 12257 pythagtriplem11 12274 pythagtriplem13 12276 grpidd 12802 ismndd 12838 mulgaddcom 13007 isringd 13220 01eq0ring 13330 uniopn 13504 ntrval 13613 clsval 13614 neival 13646 restdis 13687 lmbrf 13718 cnpnei 13722 dviaddf 14172 dvimulf 14173 logbgt0b 14387 lgslem4 14407 lgsmod 14430 lgsdir2lem2 14433 lgsdir2 14437 lgsne0 14442 lgsmulsqcoprm 14450 lgseisenlem1 14453 2sqlem4 14468 |
Copyright terms: Public domain | W3C validator |