| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2214 opabss 4097 euotd 4287 wetriext 4613 sosng 4736 xpsspw 4775 brcogw 4835 funimaexglem 5341 funfni 5358 fnco 5366 fnssres 5371 fn0 5377 fnimadisj 5378 fnimaeq0 5379 foco 5491 foimacnv 5522 fvelimab 5617 fvopab3ig 5635 dff3im 5707 dffo4 5710 fmptco 5728 f1eqcocnv 5838 f1ocnv2d 6127 fnexALT 6168 xp1st 6223 xp2nd 6224 tfrlemiubacc 6388 tfri2d 6394 tfr1onlemubacc 6404 tfrcllemubacc 6417 tfri3 6425 ecelqsg 6647 elqsn0m 6662 fidifsnen 6931 recclnq 7459 nq0a0 7524 qreccl 9716 difelfzle 10209 exfzdc 10316 zsupcllemstep 10319 modifeq2int 10478 frec2uzlt2d 10496 zzlesq 10800 1elfz0hash 10898 lennncl 10955 wrdsymb0 10967 caucvgrelemcau 11145 recvalap 11262 fzomaxdiflem 11277 2zsupmax 11391 2zinfmin 11408 fsumparts 11635 ntrivcvgap 11713 fsumdvds 12007 divconjdvds 12014 ndvdssub 12095 rplpwr 12194 dvdssqlem 12197 eucalgcvga 12226 mulgcddvds 12262 isprm2lem 12284 powm2modprm 12421 coprimeprodsq 12426 pythagtriplem11 12443 pythagtriplem13 12445 pcadd2 12510 4sqlem11 12570 grpidd 13026 ismndd 13078 gsumfzz 13127 gsumwmhm 13130 mulgaddcom 13276 resghm 13390 conjnsg 13411 isrngd 13509 isringd 13597 01eq0ring 13745 lspsneq0b 13983 lmodindp1 13984 znf1o 14207 uniopn 14237 ntrval 14346 clsval 14347 neival 14379 restdis 14420 lmbrf 14451 cnpnei 14455 dviaddf 14941 dvimulf 14942 logbgt0b 15202 perfectlem2 15236 lgslem4 15244 lgsmod 15267 lgsdir2lem2 15270 lgsdir2 15274 lgsne0 15279 lgsmulsqcoprm 15287 lgseisenlem1 15311 2lgsoddprm 15354 2sqlem4 15359 |
| Copyright terms: Public domain | W3C validator |