| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2223 opabss 4109 euotd 4300 wetriext 4626 sosng 4749 xpsspw 4788 brcogw 4848 funimaexglem 5358 funfni 5377 fnco 5385 fnssres 5390 fn0 5397 fnimadisj 5398 fnimaeq0 5399 foco 5511 foimacnv 5542 fvelimab 5637 fvopab3ig 5655 dff3im 5727 dffo4 5730 fmptco 5748 f1eqcocnv 5862 f1ocnv2d 6152 fnexALT 6198 xp1st 6253 xp2nd 6254 tfrlemiubacc 6418 tfri2d 6424 tfr1onlemubacc 6434 tfrcllemubacc 6447 tfri3 6455 ecelqsg 6677 elqsn0m 6692 fidifsnen 6969 recclnq 7507 nq0a0 7572 qreccl 9765 difelfzle 10258 exfzdc 10371 zsupcllemstep 10374 modifeq2int 10533 frec2uzlt2d 10551 zzlesq 10855 1elfz0hash 10953 lennncl 11016 wrdsymb0 11028 ccatsymb 11061 ccatlid 11065 ccatass 11067 ccatswrd 11126 swrdccat2 11127 ccatpfx 11155 caucvgrelemcau 11324 recvalap 11441 fzomaxdiflem 11456 2zsupmax 11570 2zinfmin 11587 fsumparts 11814 ntrivcvgap 11892 fsumdvds 12186 divconjdvds 12193 ndvdssub 12274 rplpwr 12381 dvdssqlem 12384 eucalgcvga 12413 mulgcddvds 12449 isprm2lem 12471 powm2modprm 12608 coprimeprodsq 12613 pythagtriplem11 12630 pythagtriplem13 12632 pcadd2 12697 4sqlem11 12757 grpidd 13248 ismndd 13302 gsumfzz 13360 gsumwmhm 13363 mulgaddcom 13515 resghm 13629 conjnsg 13650 isrngd 13748 isringd 13836 01eq0ring 13984 lspsneq0b 14222 lmodindp1 14223 znf1o 14446 psrgrp 14480 uniopn 14506 ntrval 14615 clsval 14616 neival 14648 restdis 14689 lmbrf 14720 cnpnei 14724 dviaddf 15210 dvimulf 15211 logbgt0b 15471 perfectlem2 15505 lgslem4 15513 lgsmod 15536 lgsdir2lem2 15539 lgsdir2 15543 lgsne0 15548 lgsmulsqcoprm 15556 lgseisenlem1 15580 2lgsoddprm 15623 2sqlem4 15628 |
| Copyright terms: Public domain | W3C validator |