![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpar |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2211 opabss 4093 euotd 4283 wetriext 4609 sosng 4732 xpsspw 4771 brcogw 4831 funimaexglem 5337 funfni 5354 fnco 5362 fnssres 5367 fn0 5373 fnimadisj 5374 fnimaeq0 5375 foco 5487 foimacnv 5518 fvelimab 5613 fvopab3ig 5631 dff3im 5703 dffo4 5706 fmptco 5724 f1eqcocnv 5834 f1ocnv2d 6122 fnexALT 6163 xp1st 6218 xp2nd 6219 tfrlemiubacc 6383 tfri2d 6389 tfr1onlemubacc 6399 tfrcllemubacc 6412 tfri3 6420 ecelqsg 6642 elqsn0m 6657 fidifsnen 6926 recclnq 7452 nq0a0 7517 qreccl 9707 difelfzle 10200 exfzdc 10307 modifeq2int 10457 frec2uzlt2d 10475 zzlesq 10779 1elfz0hash 10877 lennncl 10934 wrdsymb0 10946 caucvgrelemcau 11124 recvalap 11241 fzomaxdiflem 11256 2zsupmax 11369 2zinfmin 11386 fsumparts 11613 ntrivcvgap 11691 divconjdvds 11991 ndvdssub 12071 zsupcllemstep 12082 rplpwr 12164 dvdssqlem 12167 eucalgcvga 12196 mulgcddvds 12232 isprm2lem 12254 powm2modprm 12390 coprimeprodsq 12395 pythagtriplem11 12412 pythagtriplem13 12414 pcadd2 12479 4sqlem11 12539 grpidd 12966 ismndd 13018 gsumfzz 13067 gsumwmhm 13070 mulgaddcom 13216 resghm 13330 conjnsg 13351 isrngd 13449 isringd 13537 01eq0ring 13685 lspsneq0b 13923 lmodindp1 13924 znf1o 14139 uniopn 14169 ntrval 14278 clsval 14279 neival 14311 restdis 14352 lmbrf 14383 cnpnei 14387 dviaddf 14854 dvimulf 14855 logbgt0b 15098 lgslem4 15119 lgsmod 15142 lgsdir2lem2 15145 lgsdir2 15149 lgsne0 15154 lgsmulsqcoprm 15162 lgseisenlem1 15186 2sqlem4 15205 |
Copyright terms: Public domain | W3C validator |