| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 616 eqtr 2247 opabss 4148 euotd 4341 wetriext 4669 sosng 4792 xpsspw 4831 brcogw 4891 funimaexglem 5404 funfni 5423 fnco 5431 fnssres 5436 fn0 5443 fnimadisj 5444 fnimaeq0 5445 foco 5559 foimacnv 5590 fvelimab 5690 fvopab3ig 5708 dff3im 5780 dffo4 5783 fmptco 5801 f1eqcocnv 5915 f1ocnv2d 6210 fnexALT 6256 xp1st 6311 xp2nd 6312 tfrlemiubacc 6476 tfri2d 6482 tfr1onlemubacc 6492 tfrcllemubacc 6505 tfri3 6513 ecelqsg 6735 elqsn0m 6750 fidifsnen 7032 pr1or2 7367 recclnq 7579 nq0a0 7644 qreccl 9837 difelfzle 10330 exfzdc 10446 zsupcllemstep 10449 modifeq2int 10608 frec2uzlt2d 10626 zzlesq 10930 1elfz0hash 11028 lennncl 11091 wrdsymb0 11104 ccatsymb 11137 ccatlid 11141 ccatass 11143 ccatswrd 11202 swrdccat2 11203 ccatpfx 11233 swrdccatfn 11256 swrdccat 11267 caucvgrelemcau 11491 recvalap 11608 fzomaxdiflem 11623 2zsupmax 11737 2zinfmin 11754 fsumparts 11981 ntrivcvgap 12059 fsumdvds 12353 divconjdvds 12360 ndvdssub 12441 rplpwr 12548 dvdssqlem 12551 eucalgcvga 12580 mulgcddvds 12616 isprm2lem 12638 powm2modprm 12775 coprimeprodsq 12780 pythagtriplem11 12797 pythagtriplem13 12799 pcadd2 12864 4sqlem11 12924 grpidd 13416 ismndd 13470 gsumfzz 13528 gsumwmhm 13531 mulgaddcom 13683 resghm 13797 conjnsg 13818 isrngd 13916 isringd 14004 01eq0ring 14153 lspsneq0b 14391 lmodindp1 14392 znf1o 14615 psrgrp 14649 uniopn 14675 ntrval 14784 clsval 14785 neival 14817 restdis 14858 lmbrf 14889 cnpnei 14893 dviaddf 15379 dvimulf 15380 logbgt0b 15640 perfectlem2 15674 lgslem4 15682 lgsmod 15705 lgsdir2lem2 15708 lgsdir2 15712 lgsne0 15717 lgsmulsqcoprm 15725 lgseisenlem1 15749 2lgsoddprm 15792 2sqlem4 15797 wlk1walkdom 16070 |
| Copyright terms: Public domain | W3C validator |