Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpdan | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | |
mpdan.2 |
Ref | Expression |
---|---|
mpdan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | mpdan.1 | . 2 | |
3 | mpdan.2 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpidan 421 mpan2 423 mpjaodan 793 mpd3an3 1333 eueq2dc 2903 csbiegf 3092 difsnb 3723 reusv3i 4444 fvmpt3 5575 ffvelrnd 5632 fnressn 5682 fliftel1 5773 f1oiso2 5806 riota5f 5833 1stvalg 6121 2ndvalg 6122 brtpos2 6230 tfrlemibxssdm 6306 dom2lem 6750 php5 6836 nnfi 6850 xpfi 6907 supisoti 6987 ordiso2 7012 omp1eomlem 7071 nnnninfeq2 7105 onenon 7161 oncardval 7163 cardonle 7164 recidnq 7355 archnqq 7379 prarloclemarch2 7381 recexprlem1ssl 7595 recexprlem1ssu 7596 recexprlemss1l 7597 recexprlemss1u 7598 recexprlemex 7599 0idsr 7729 lep1 8761 suprlubex 8868 uz11 9509 xnegid 9816 eluzfz2 9988 fzsuc 10025 fzsuc2 10035 fzp1disj 10036 fzneuz 10057 fzp1nel 10060 exbtwnzlemex 10206 flhalf 10258 modqval 10280 frec2uzsucd 10357 frecuzrdgsuc 10370 uzsinds 10398 seq3p1 10418 seqp1cd 10422 expubnd 10533 iexpcyc 10580 binom2sub1 10590 hashennn 10714 shftfval 10785 shftcan1 10798 cjval 10809 reval 10813 imval 10814 cjmulrcl 10851 addcj 10855 absval 10965 resqrexlemdecn 10976 resqrexlemnmsq 10981 resqrexlemnm 10982 absneg 11014 abscj 11016 sqabsadd 11019 sqabssub 11020 ltabs 11051 dfabsmax 11181 negfi 11191 fsum3 11350 trirecip 11464 fprodseq 11546 efval 11624 ege2le3 11634 efcan 11639 sinval 11665 cosval 11666 efi4p 11680 resin4p 11681 recos4p 11682 sincossq 11711 eirraplem 11739 iddvds 11766 1dvds 11767 bezoutlemstep 11952 coprmgcdb 12042 1idssfct 12069 exprmfct 12092 oddpwdclemdc 12127 phival 12167 odzphi 12200 oddprmdvds 12306 setsn0fun 12453 0subm 12702 grprcan 12740 isgrpid2 12743 grpinvid 12760 cldval 12893 ntrfval 12894 clsfval 12895 neifval 12934 tx1cn 13063 ismet 13138 isxmet 13139 divcnap 13349 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 1lgs 13738 lgs1 13739 bj-charfun 13842 bj-findis 14014 |
Copyright terms: Public domain | W3C validator |