Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpdan | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | |
mpdan.2 |
Ref | Expression |
---|---|
mpdan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | mpdan.1 | . 2 | |
3 | mpdan.2 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpidan 420 mpan2 422 mpjaodan 788 mpd3an3 1328 eueq2dc 2898 csbiegf 3087 difsnb 3715 reusv3i 4436 fvmpt3 5564 ffvelrnd 5620 fnressn 5670 fliftel1 5761 f1oiso2 5794 riota5f 5821 1stvalg 6107 2ndvalg 6108 brtpos2 6215 tfrlemibxssdm 6291 dom2lem 6734 php5 6820 nnfi 6834 xpfi 6891 supisoti 6971 ordiso2 6996 omp1eomlem 7055 nnnninfeq2 7089 onenon 7136 oncardval 7138 cardonle 7139 recidnq 7330 archnqq 7354 prarloclemarch2 7356 recexprlem1ssl 7570 recexprlem1ssu 7571 recexprlemss1l 7572 recexprlemss1u 7573 recexprlemex 7574 0idsr 7704 lep1 8736 suprlubex 8843 uz11 9484 xnegid 9791 eluzfz2 9963 fzsuc 10000 fzsuc2 10010 fzp1disj 10011 fzneuz 10032 fzp1nel 10035 exbtwnzlemex 10181 flhalf 10233 modqval 10255 frec2uzsucd 10332 frecuzrdgsuc 10345 uzsinds 10373 seq3p1 10393 seqp1cd 10397 expubnd 10508 iexpcyc 10555 binom2sub1 10565 hashennn 10689 shftfval 10759 shftcan1 10772 cjval 10783 reval 10787 imval 10788 cjmulrcl 10825 addcj 10829 absval 10939 resqrexlemdecn 10950 resqrexlemnmsq 10955 resqrexlemnm 10956 absneg 10988 abscj 10990 sqabsadd 10993 sqabssub 10994 ltabs 11025 dfabsmax 11155 negfi 11165 fsum3 11324 trirecip 11438 fprodseq 11520 efval 11598 ege2le3 11608 efcan 11613 sinval 11639 cosval 11640 efi4p 11654 resin4p 11655 recos4p 11656 sincossq 11685 eirraplem 11713 iddvds 11740 1dvds 11741 bezoutlemstep 11926 coprmgcdb 12016 1idssfct 12043 exprmfct 12066 oddpwdclemdc 12101 phival 12141 odzphi 12174 oddprmdvds 12280 setsn0fun 12427 cldval 12699 ntrfval 12700 clsfval 12701 neifval 12740 tx1cn 12869 ismet 12944 isxmet 12945 divcnap 13155 dvaddxxbr 13265 dvmulxxbr 13266 dvcoapbr 13271 1lgs 13544 lgs1 13545 bj-charfun 13649 bj-findis 13821 |
Copyright terms: Public domain | W3C validator |