| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biadanid | GIF version | ||
| Description: Deduction associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| biadanid.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| biadanid.2 | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biadanid | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanid.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | biadanid.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpa 296 | . . . . 5 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| 4 | 3 | an32s 568 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpdan 421 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 6 | 1, 5 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 7 | 2 | biimpar 297 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| 8 | 7 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) → 𝜓) |
| 9 | 6, 8 | impbida 596 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dflidl2 14044 df2idl2 14065 |
| Copyright terms: Public domain | W3C validator |