ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadanid GIF version

Theorem biadanid 614
Description: Deduction associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
biadanid.1 ((𝜑𝜓) → 𝜒)
biadanid.2 ((𝜑𝜒) → (𝜓𝜃))
Assertion
Ref Expression
biadanid (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biadanid
StepHypRef Expression
1 biadanid.1 . . 3 ((𝜑𝜓) → 𝜒)
2 biadanid.2 . . . . . 6 ((𝜑𝜒) → (𝜓𝜃))
32biimpa 296 . . . . 5 (((𝜑𝜒) ∧ 𝜓) → 𝜃)
43an32s 568 . . . 4 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
51, 4mpdan 421 . . 3 ((𝜑𝜓) → 𝜃)
61, 5jca 306 . 2 ((𝜑𝜓) → (𝜒𝜃))
72biimpar 297 . . 3 (((𝜑𝜒) ∧ 𝜃) → 𝜓)
87anasss 399 . 2 ((𝜑 ∧ (𝜒𝜃)) → 𝜓)
96, 8impbida 596 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dflidl2  13797  df2idl2  13817
  Copyright terms: Public domain W3C validator