Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbida | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | |
impbida.2 |
Ref | Expression |
---|---|
impbida |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | impbida.2 | . . 3 | |
4 | 3 | ex 114 | . 2 |
5 | 2, 4 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eqrdav 2169 funfvbrb 5606 f1ocnv2d 6050 1stconst 6197 2ndconst 6198 cnvf1o 6201 ersymb 6523 swoer 6537 erth 6553 enen1 6814 enen2 6815 domen1 6816 domen2 6817 xpmapenlem 6823 fidifsnen 6844 fundmfibi 6912 f1dmvrnfibi 6917 ordiso2 7008 omniwomnimkv 7139 enwomnilem 7141 infregelbex 9544 fzsplit2 9993 fseq1p1m1 10037 elfz2nn0 10055 btwnzge0 10243 modqsubdir 10336 zesq 10581 hashprg 10730 rereb 10814 abslt 11039 absle 11040 maxleastb 11165 maxltsup 11169 xrltmaxsup 11207 xrmaxltsup 11208 iserex 11289 mptfzshft 11392 fsumrev 11393 fprodrev 11569 dvdsadd2b 11789 nn0ob 11854 dfgcd3 11952 dfgcd2 11956 dvdsmulgcd 11967 lcmgcdeq 12024 isprm5 12083 qden1elz 12146 mhmf1o 12679 cncnp 12945 xmetxpbl 13223 dedekindicc 13326 coseq0q4123 13470 coseq0negpitopi 13472 relogeftb 13501 relogbcxpbap 13598 pwf1oexmid 13954 isomninnlem 13984 apdiff 14002 iswomninnlem 14003 ismkvnnlem 14006 redcwlpolemeq1 14008 |
Copyright terms: Public domain | W3C validator |