| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | Unicode version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 |
|
| impbida.2 |
|
| Ref | Expression |
|---|---|
| impbida |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | impbida.2 |
. . 3
| |
| 4 | 3 | ex 115 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2195 funfvbrb 5675 f1ocnv2d 6127 1stconst 6279 2ndconst 6280 cnvf1o 6283 ersymb 6606 swoer 6620 erth 6638 pw2f1odclem 6895 enen1 6901 enen2 6902 domen1 6903 domen2 6904 xpmapenlem 6910 fidifsnen 6931 fundmfibi 7004 f1dmvrnfibi 7010 ordiso2 7101 omniwomnimkv 7233 enwomnilem 7235 nninfwlpoimlemginf 7242 exmidapne 7327 infregelbex 9672 fzsplit2 10125 fseq1p1m1 10169 elfz2nn0 10187 btwnzge0 10390 modqsubdir 10485 zesq 10750 hashprg 10900 rereb 11028 abslt 11253 absle 11254 maxleastb 11379 maxltsup 11383 xrltmaxsup 11422 xrmaxltsup 11423 iserex 11504 mptfzshft 11607 fsumrev 11608 fprodrev 11784 dvdsadd2b 12005 nn0ob 12073 bitsfzo 12119 dfgcd3 12177 dfgcd2 12181 dvdsmulgcd 12192 lcmgcdeq 12251 isprm5 12310 qden1elz 12373 issubmnd 13083 mhmf1o 13102 subsubm 13115 resmhm2b 13121 grpinvid1 13184 grpinvid2 13185 subsubg 13327 ssnmz 13341 ghmf1 13403 kerf1ghm 13404 ghmf1o 13405 conjnmzb 13410 0unit 13685 rhmf1o 13724 subsubrng 13770 subrgunit 13795 subsubrg 13801 islss3 13935 islss4 13938 lspsnel6 13964 lspsneq0b 13983 dflidl2rng 14037 cncnp 14466 xmetxpbl 14744 dedekindicc 14869 coseq0q4123 15070 coseq0negpitopi 15072 relogeftb 15101 relogbcxpbap 15201 pwf1oexmid 15644 isomninnlem 15674 apdiff 15692 iswomninnlem 15693 ismkvnnlem 15696 redcwlpolemeq1 15698 |
| Copyright terms: Public domain | W3C validator |