| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | Unicode version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 |
|
| impbida.2 |
|
| Ref | Expression |
|---|---|
| impbida |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | impbida.2 |
. . 3
| |
| 4 | 3 | ex 115 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 616 eqrdav 2228 funfvbrb 5748 f1ocnv2d 6210 1stconst 6367 2ndconst 6368 cnvf1o 6371 ersymb 6694 swoer 6708 erth 6726 pw2f1odclem 6995 enen1 7001 enen2 7002 domen1 7003 domen2 7004 xpmapenlem 7010 fidifsnen 7032 fundmfibi 7105 f1dmvrnfibi 7111 ordiso2 7202 omniwomnimkv 7334 enwomnilem 7336 nninfwlpoimlemginf 7343 pw1if 7410 exmidapne 7446 infregelbex 9793 fzsplit2 10246 fseq1p1m1 10290 elfz2nn0 10308 btwnzge0 10520 modqsubdir 10615 zesq 10880 hashprg 11030 rereb 11374 abslt 11599 absle 11600 maxleastb 11725 maxltsup 11729 xrltmaxsup 11768 xrmaxltsup 11769 iserex 11850 mptfzshft 11953 fsumrev 11954 fprodrev 12130 dvdsadd2b 12351 nn0ob 12419 bitsfzo 12466 dfgcd3 12531 dfgcd2 12535 dvdsmulgcd 12546 lcmgcdeq 12605 isprm5 12664 qden1elz 12727 issubmnd 13475 mhmf1o 13503 subsubm 13516 resmhm2b 13522 grpinvid1 13585 grpinvid2 13586 subsubg 13734 ssnmz 13748 ghmf1 13810 kerf1ghm 13811 ghmf1o 13812 conjnmzb 13817 0unit 14093 rhmf1o 14132 subsubrng 14178 subrgunit 14203 subsubrg 14209 islss3 14343 islss4 14346 lspsnel6 14372 lspsneq0b 14391 dflidl2rng 14445 cncnp 14904 xmetxpbl 15182 dedekindicc 15307 coseq0q4123 15508 coseq0negpitopi 15510 relogeftb 15539 relogbcxpbap 15639 2omap 16359 pw1map 16361 pwf1oexmid 16365 isomninnlem 16398 apdiff 16416 iswomninnlem 16417 ismkvnnlem 16420 redcwlpolemeq1 16422 |
| Copyright terms: Public domain | W3C validator |