Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbida | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | |
impbida.2 |
Ref | Expression |
---|---|
impbida |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | impbida.2 | . . 3 | |
4 | 3 | ex 114 | . 2 |
5 | 2, 4 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eqrdav 2169 funfvbrb 5609 f1ocnv2d 6053 1stconst 6200 2ndconst 6201 cnvf1o 6204 ersymb 6527 swoer 6541 erth 6557 enen1 6818 enen2 6819 domen1 6820 domen2 6821 xpmapenlem 6827 fidifsnen 6848 fundmfibi 6916 f1dmvrnfibi 6921 ordiso2 7012 omniwomnimkv 7143 enwomnilem 7145 nninfwlpoimlemginf 7152 infregelbex 9557 fzsplit2 10006 fseq1p1m1 10050 elfz2nn0 10068 btwnzge0 10256 modqsubdir 10349 zesq 10594 hashprg 10743 rereb 10827 abslt 11052 absle 11053 maxleastb 11178 maxltsup 11182 xrltmaxsup 11220 xrmaxltsup 11221 iserex 11302 mptfzshft 11405 fsumrev 11406 fprodrev 11582 dvdsadd2b 11802 nn0ob 11867 dfgcd3 11965 dfgcd2 11969 dvdsmulgcd 11980 lcmgcdeq 12037 isprm5 12096 qden1elz 12159 mhmf1o 12693 grpinvid1 12754 grpinvid2 12755 cncnp 13024 xmetxpbl 13302 dedekindicc 13405 coseq0q4123 13549 coseq0negpitopi 13551 relogeftb 13580 relogbcxpbap 13677 pwf1oexmid 14032 isomninnlem 14062 apdiff 14080 iswomninnlem 14081 ismkvnnlem 14084 redcwlpolemeq1 14086 |
Copyright terms: Public domain | W3C validator |