![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbida | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
impbida.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbida |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | impbida.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbid 129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadanid 614 eqrdav 2192 funfvbrb 5671 f1ocnv2d 6122 1stconst 6274 2ndconst 6275 cnvf1o 6278 ersymb 6601 swoer 6615 erth 6633 pw2f1odclem 6890 enen1 6896 enen2 6897 domen1 6898 domen2 6899 xpmapenlem 6905 fidifsnen 6926 fundmfibi 6997 f1dmvrnfibi 7003 ordiso2 7094 omniwomnimkv 7226 enwomnilem 7228 nninfwlpoimlemginf 7235 exmidapne 7320 infregelbex 9663 fzsplit2 10116 fseq1p1m1 10160 elfz2nn0 10178 btwnzge0 10369 modqsubdir 10464 zesq 10729 hashprg 10879 rereb 11007 abslt 11232 absle 11233 maxleastb 11358 maxltsup 11362 xrltmaxsup 11400 xrmaxltsup 11401 iserex 11482 mptfzshft 11585 fsumrev 11586 fprodrev 11762 dvdsadd2b 11983 nn0ob 12049 dfgcd3 12147 dfgcd2 12151 dvdsmulgcd 12162 lcmgcdeq 12221 isprm5 12280 qden1elz 12343 issubmnd 13023 mhmf1o 13042 subsubm 13055 resmhm2b 13061 grpinvid1 13124 grpinvid2 13125 subsubg 13267 ssnmz 13281 ghmf1 13343 kerf1ghm 13344 ghmf1o 13345 conjnmzb 13350 0unit 13625 rhmf1o 13664 subsubrng 13710 subrgunit 13735 subsubrg 13741 islss3 13875 islss4 13878 lspsnel6 13904 lspsneq0b 13923 dflidl2rng 13977 cncnp 14398 xmetxpbl 14676 dedekindicc 14787 coseq0q4123 14969 coseq0negpitopi 14971 relogeftb 15000 relogbcxpbap 15097 pwf1oexmid 15490 isomninnlem 15520 apdiff 15538 iswomninnlem 15539 ismkvnnlem 15542 redcwlpolemeq1 15544 |
Copyright terms: Public domain | W3C validator |