| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | Unicode version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 |
|
| impbida.2 |
|
| Ref | Expression |
|---|---|
| impbida |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | impbida.2 |
. . 3
| |
| 4 | 3 | ex 115 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2204 funfvbrb 5695 f1ocnv2d 6152 1stconst 6309 2ndconst 6310 cnvf1o 6313 ersymb 6636 swoer 6650 erth 6668 pw2f1odclem 6933 enen1 6939 enen2 6940 domen1 6941 domen2 6942 xpmapenlem 6948 fidifsnen 6969 fundmfibi 7042 f1dmvrnfibi 7048 ordiso2 7139 omniwomnimkv 7271 enwomnilem 7273 nninfwlpoimlemginf 7280 exmidapne 7374 infregelbex 9721 fzsplit2 10174 fseq1p1m1 10218 elfz2nn0 10236 btwnzge0 10445 modqsubdir 10540 zesq 10805 hashprg 10955 rereb 11207 abslt 11432 absle 11433 maxleastb 11558 maxltsup 11562 xrltmaxsup 11601 xrmaxltsup 11602 iserex 11683 mptfzshft 11786 fsumrev 11787 fprodrev 11963 dvdsadd2b 12184 nn0ob 12252 bitsfzo 12299 dfgcd3 12364 dfgcd2 12368 dvdsmulgcd 12379 lcmgcdeq 12438 isprm5 12497 qden1elz 12560 issubmnd 13307 mhmf1o 13335 subsubm 13348 resmhm2b 13354 grpinvid1 13417 grpinvid2 13418 subsubg 13566 ssnmz 13580 ghmf1 13642 kerf1ghm 13643 ghmf1o 13644 conjnmzb 13649 0unit 13924 rhmf1o 13963 subsubrng 14009 subrgunit 14034 subsubrg 14040 islss3 14174 islss4 14177 lspsnel6 14203 lspsneq0b 14222 dflidl2rng 14276 cncnp 14735 xmetxpbl 15013 dedekindicc 15138 coseq0q4123 15339 coseq0negpitopi 15341 relogeftb 15370 relogbcxpbap 15470 2omap 15969 pwf1oexmid 15973 isomninnlem 16006 apdiff 16024 iswomninnlem 16025 ismkvnnlem 16028 redcwlpolemeq1 16030 |
| Copyright terms: Public domain | W3C validator |