| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov | Unicode version | ||
| Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ov.1 |
|
| ov.2 |
|
| ov.3 |
|
| ov.4 |
|
| ov.5 |
|
| ov.6 |
|
| Ref | Expression |
|---|---|
| ov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5937 |
. . . . 5
| |
| 2 | ov.6 |
. . . . . 6
| |
| 3 | 2 | fveq1i 5571 |
. . . . 5
|
| 4 | 1, 3 | eqtri 2225 |
. . . 4
|
| 5 | 4 | eqeq1i 2212 |
. . 3
|
| 6 | ov.5 |
. . . . . 6
| |
| 7 | 6 | fnoprab 6038 |
. . . . 5
|
| 8 | eleq1 2267 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
|
| 10 | eleq1 2267 |
. . . . . . . 8
| |
| 11 | 10 | anbi2d 464 |
. . . . . . 7
|
| 12 | 9, 11 | opelopabg 4312 |
. . . . . 6
|
| 13 | 12 | ibir 177 |
. . . . 5
|
| 14 | fnopfvb 5614 |
. . . . 5
| |
| 15 | 7, 13, 14 | sylancr 414 |
. . . 4
|
| 16 | ov.1 |
. . . . 5
| |
| 17 | ov.2 |
. . . . . . 7
| |
| 18 | 9, 17 | anbi12d 473 |
. . . . . 6
|
| 19 | ov.3 |
. . . . . . 7
| |
| 20 | 11, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | ov.4 |
. . . . . . 7
| |
| 22 | 21 | anbi2d 464 |
. . . . . 6
|
| 23 | 18, 20, 22 | eloprabg 6023 |
. . . . 5
|
| 24 | 16, 23 | mp3an3 1338 |
. . . 4
|
| 25 | 15, 24 | bitrd 188 |
. . 3
|
| 26 | 5, 25 | bitrid 192 |
. 2
|
| 27 | 26 | bianabs 611 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-oprab 5938 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |