| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovg | Unicode version | ||
| Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ovg.1 |
|
| ovg.2 |
|
| ovg.3 |
|
| ovg.4 |
|
| ovg.5 |
|
| Ref | Expression |
|---|---|
| ovg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 |
. . . . 5
| |
| 2 | ovg.5 |
. . . . . 6
| |
| 3 | 2 | fveq1i 5577 |
. . . . 5
|
| 4 | 1, 3 | eqtri 2226 |
. . . 4
|
| 5 | 4 | eqeq1i 2213 |
. . 3
|
| 6 | eqeq2 2215 |
. . . . . . . . . 10
| |
| 7 | opeq2 3820 |
. . . . . . . . . . 11
| |
| 8 | 7 | eleq1d 2274 |
. . . . . . . . . 10
|
| 9 | 6, 8 | bibi12d 235 |
. . . . . . . . 9
|
| 10 | 9 | imbi2d 230 |
. . . . . . . 8
|
| 11 | ovg.4 |
. . . . . . . . . . . 12
| |
| 12 | 11 | ex 115 |
. . . . . . . . . . 11
|
| 13 | 12 | alrimivv 1898 |
. . . . . . . . . 10
|
| 14 | fnoprabg 6046 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . 9
|
| 16 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anbi1d 465 |
. . . . . . . . . . 11
|
| 18 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 19 | 18 | anbi2d 464 |
. . . . . . . . . . 11
|
| 20 | 17, 19 | opelopabg 4314 |
. . . . . . . . . 10
|
| 21 | 20 | ibir 177 |
. . . . . . . . 9
|
| 22 | fnopfvb 5620 |
. . . . . . . . 9
| |
| 23 | 15, 21, 22 | syl2an 289 |
. . . . . . . 8
|
| 24 | 10, 23 | vtoclg 2833 |
. . . . . . 7
|
| 25 | 24 | com12 30 |
. . . . . 6
|
| 26 | 25 | exp32 365 |
. . . . 5
|
| 27 | 26 | 3imp2 1225 |
. . . 4
|
| 28 | ovg.1 |
. . . . . . 7
| |
| 29 | 17, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | ovg.2 |
. . . . . . 7
| |
| 31 | 19, 30 | anbi12d 473 |
. . . . . 6
|
| 32 | ovg.3 |
. . . . . . 7
| |
| 33 | 32 | anbi2d 464 |
. . . . . 6
|
| 34 | 29, 31, 33 | eloprabg 6033 |
. . . . 5
|
| 35 | 34 | adantl 277 |
. . . 4
|
| 36 | 27, 35 | bitrd 188 |
. . 3
|
| 37 | 5, 36 | bitrid 192 |
. 2
|
| 38 | biidd 172 |
. . . . 5
| |
| 39 | 38 | bianabs 611 |
. . . 4
|
| 40 | 39 | 3adant3 1020 |
. . 3
|
| 41 | 40 | adantl 277 |
. 2
|
| 42 | 37, 41 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |