Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovg | Unicode version |
Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ovg.1 | |
ovg.2 | |
ovg.3 | |
ovg.4 | |
ovg.5 |
Ref | Expression |
---|---|
ovg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . . . . 5 | |
2 | ovg.5 | . . . . . 6 | |
3 | 2 | fveq1i 5487 | . . . . 5 |
4 | 1, 3 | eqtri 2186 | . . . 4 |
5 | 4 | eqeq1i 2173 | . . 3 |
6 | eqeq2 2175 | . . . . . . . . . 10 | |
7 | opeq2 3759 | . . . . . . . . . . 11 | |
8 | 7 | eleq1d 2235 | . . . . . . . . . 10 |
9 | 6, 8 | bibi12d 234 | . . . . . . . . 9 |
10 | 9 | imbi2d 229 | . . . . . . . 8 |
11 | ovg.4 | . . . . . . . . . . . 12 | |
12 | 11 | ex 114 | . . . . . . . . . . 11 |
13 | 12 | alrimivv 1863 | . . . . . . . . . 10 |
14 | fnoprabg 5943 | . . . . . . . . . 10 | |
15 | 13, 14 | syl 14 | . . . . . . . . 9 |
16 | eleq1 2229 | . . . . . . . . . . . 12 | |
17 | 16 | anbi1d 461 | . . . . . . . . . . 11 |
18 | eleq1 2229 | . . . . . . . . . . . 12 | |
19 | 18 | anbi2d 460 | . . . . . . . . . . 11 |
20 | 17, 19 | opelopabg 4246 | . . . . . . . . . 10 |
21 | 20 | ibir 176 | . . . . . . . . 9 |
22 | fnopfvb 5528 | . . . . . . . . 9 | |
23 | 15, 21, 22 | syl2an 287 | . . . . . . . 8 |
24 | 10, 23 | vtoclg 2786 | . . . . . . 7 |
25 | 24 | com12 30 | . . . . . 6 |
26 | 25 | exp32 363 | . . . . 5 |
27 | 26 | 3imp2 1212 | . . . 4 |
28 | ovg.1 | . . . . . . 7 | |
29 | 17, 28 | anbi12d 465 | . . . . . 6 |
30 | ovg.2 | . . . . . . 7 | |
31 | 19, 30 | anbi12d 465 | . . . . . 6 |
32 | ovg.3 | . . . . . . 7 | |
33 | 32 | anbi2d 460 | . . . . . 6 |
34 | 29, 31, 33 | eloprabg 5930 | . . . . 5 |
35 | 34 | adantl 275 | . . . 4 |
36 | 27, 35 | bitrd 187 | . . 3 |
37 | 5, 36 | syl5bb 191 | . 2 |
38 | biidd 171 | . . . . 5 | |
39 | 38 | bianabs 601 | . . . 4 |
40 | 39 | 3adant3 1007 | . . 3 |
41 | 40 | adantl 275 | . 2 |
42 | 37, 41 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wal 1341 wceq 1343 weu 2014 wcel 2136 cop 3579 copab 4042 wfn 5183 cfv 5188 (class class class)co 5842 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-oprab 5846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |