ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab2a Unicode version

Theorem opelopab2a 4312
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopab2a  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y    x, C, y   
x, D, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
2 eleq1 2268 . . . . 5  |-  ( y  =  B  ->  (
y  e.  D  <->  B  e.  D ) )
31, 2bi2anan9 606 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  C  /\  y  e.  D )  <->  ( A  e.  C  /\  B  e.  D ) ) )
4 opelopabga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
53, 4anbi12d 473 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( x  e.  C  /\  y  e.  D )  /\  ph ) 
<->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) ) )
65opelopabga 4310 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <-> 
( ( A  e.  C  /\  B  e.  D )  /\  ps ) ) )
76bianabs 611 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636   {copab 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4107
This theorem is referenced by:  opelopab2  4318  brab2a  4729  brab2ga  4751  ltdfpr  7621  aprval  14077
  Copyright terms: Public domain W3C validator