Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelopab2a | Unicode version |
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 |
Ref | Expression |
---|---|
opelopab2a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2220 | . . . . 5 | |
2 | eleq1 2220 | . . . . 5 | |
3 | 1, 2 | bi2anan9 596 | . . . 4 |
4 | opelopabga.1 | . . . 4 | |
5 | 3, 4 | anbi12d 465 | . . 3 |
6 | 5 | opelopabga 4225 | . 2 |
7 | 6 | bianabs 601 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cop 3564 copab 4026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-opab 4028 |
This theorem is referenced by: opelopab2 4232 brab2a 4641 brab2ga 4663 ltdfpr 7428 |
Copyright terms: Public domain | W3C validator |