ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab2a Unicode version

Theorem opelopab2a 4227
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopab2a  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y    x, C, y   
x, D, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2220 . . . . 5  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
2 eleq1 2220 . . . . 5  |-  ( y  =  B  ->  (
y  e.  D  <->  B  e.  D ) )
31, 2bi2anan9 596 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  C  /\  y  e.  D )  <->  ( A  e.  C  /\  B  e.  D ) ) )
4 opelopabga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
53, 4anbi12d 465 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( x  e.  C  /\  y  e.  D )  /\  ph ) 
<->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) ) )
65opelopabga 4225 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <-> 
( ( A  e.  C  /\  B  e.  D )  /\  ps ) ) )
76bianabs 601 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   <.cop 3564   {copab 4026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-opab 4028
This theorem is referenced by:  opelopab2  4232  brab2a  4641  brab2ga  4663  ltdfpr  7428
  Copyright terms: Public domain W3C validator