ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrexv Unicode version

Theorem ceqsrexv 2869
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexv  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2461 . . 3  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
2 an12 561 . . . 4  |-  ( ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
32exbii 1605 . . 3  |-  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  E. x
( x  e.  B  /\  ( x  =  A  /\  ph ) ) )
41, 3bitr4i 187 . 2  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  =  A  /\  (
x  e.  B  /\  ph ) ) )
5 eleq1 2240 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 ceqsrexv.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 473 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
87ceqsexgv 2868 . . 3  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( A  e.  B  /\  ps )
) )
98bianabs 611 . 2  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ps )
)
104, 9bitrid 192 1  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741
This theorem is referenced by:  ceqsrexbv  2870  ceqsrex2v  2871  f1oiso  5829  creur  8918  creui  8919
  Copyright terms: Public domain W3C validator