Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsrexv | Unicode version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 |
Ref | Expression |
---|---|
ceqsrexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . . 3 | |
2 | an12 556 | . . . 4 | |
3 | 2 | exbii 1598 | . . 3 |
4 | 1, 3 | bitr4i 186 | . 2 |
5 | eleq1 2233 | . . . . 5 | |
6 | ceqsrexv.1 | . . . . 5 | |
7 | 5, 6 | anbi12d 470 | . . . 4 |
8 | 7 | ceqsexgv 2859 | . . 3 |
9 | 8 | bianabs 606 | . 2 |
10 | 4, 9 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: ceqsrexbv 2861 ceqsrex2v 2862 f1oiso 5805 creur 8875 creui 8876 |
Copyright terms: Public domain | W3C validator |