ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrexv Unicode version

Theorem ceqsrexv 2761
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexv  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2376 . . 3  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
2 an12 529 . . . 4  |-  ( ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
32exbii 1548 . . 3  |-  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  E. x
( x  e.  B  /\  ( x  =  A  /\  ph ) ) )
41, 3bitr4i 186 . 2  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  =  A  /\  (
x  e.  B  /\  ph ) ) )
5 eleq1 2157 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 ceqsrexv.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 458 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
87ceqsexgv 2760 . . 3  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( A  e.  B  /\  ps )
) )
98bianabs 579 . 2  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ps )
)
104, 9syl5bb 191 1  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296   E.wex 1433    e. wcel 1445   E.wrex 2371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635
This theorem is referenced by:  ceqsrexbv  2762  ceqsrex2v  2763  f1oiso  5643  creur  8517  creui  8518
  Copyright terms: Public domain W3C validator