ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmow Unicode version

Theorem cbvmow 2096
Description: Rule used to change bound variables, using implicit substitution. Version of cbvmo 2095 with a disjoint variable condition. (Contributed by NM, 9-Mar-1995.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvmow.1  |-  F/ y
ph
cbvmow.2  |-  F/ x ps
cbvmow.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvmow  |-  ( E* x ph  <->  E* y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvmow
StepHypRef Expression
1 cbvmow.1 . 2  |-  F/ y
ph
2 cbvmow.2 . 2  |-  F/ x ps
3 cbvmow.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvmo 2095 1  |-  ( E* x ph  <->  E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1484   E*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  cbvrmow  2691
  Copyright terms: Public domain W3C validator