ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmow Unicode version

Theorem cbvrmow 2714
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 2764 with a disjoint variable condition. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvrmow.1  |-  F/ y
ph
cbvrmow.2  |-  F/ x ps
cbvrmow.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrmow  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvrmow
StepHypRef Expression
1 nfv 1574 . . . 4  |-  F/ y  x  e.  A
2 cbvrmow.1 . . . 4  |-  F/ y
ph
31, 2nfan 1611 . . 3  |-  F/ y ( x  e.  A  /\  ph )
4 nfv 1574 . . . 4  |-  F/ x  y  e.  A
5 cbvrmow.2 . . . 4  |-  F/ x ps
64, 5nfan 1611 . . 3  |-  F/ x
( y  e.  A  /\  ps )
7 eleq1w 2290 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
8 cbvrmow.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
97, 8anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
103, 6, 9cbvmow 2118 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E* y ( y  e.  A  /\  ps )
)
11 df-rmo 2516 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
12 df-rmo 2516 . 2  |-  ( E* y  e.  A  ps  <->  E* y ( y  e.  A  /\  ps )
)
1310, 11, 123bitr4i 212 1  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1506   E*wmo 2078    e. wcel 2200   E*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clel 2225  df-rmo 2516
This theorem is referenced by:  cbvreuw  2760
  Copyright terms: Public domain W3C validator