ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbcv Unicode version

Theorem cbvsbcv 2980
Description: Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvsbcv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvsbcv  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    A( x, y)

Proof of Theorem cbvsbcv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ y
ph
2 nfv 1516 . 2  |-  F/ x ps
3 cbvsbcv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvsbc 2979 1  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator