ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbcv Unicode version

Theorem cbvsbcv 3027
Description: Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvsbcv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvsbcv  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    A( x, y)

Proof of Theorem cbvsbcv
StepHypRef Expression
1 nfv 1550 . 2  |-  F/ y
ph
2 nfv 1550 . 2  |-  F/ x ps
3 cbvsbcv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvsbc 3026 1  |-  ( [. A  /  x ]. ph  <->  [. A  / 
y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   [.wsbc 2997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-sbc 2998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator