Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbciegft | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2982.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbciegft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 2974 | . . 3 | |
2 | biimp 117 | . . . . . . . 8 | |
3 | 2 | imim2i 12 | . . . . . . 7 |
4 | 3 | impd 252 | . . . . . 6 |
5 | 4 | alimi 1443 | . . . . 5 |
6 | 19.23t 1665 | . . . . . 6 | |
7 | 6 | biimpa 294 | . . . . 5 |
8 | 5, 7 | sylan2 284 | . . . 4 |
9 | 8 | 3adant1 1005 | . . 3 |
10 | 1, 9 | syl5bi 151 | . 2 |
11 | biimpr 129 | . . . . . . . 8 | |
12 | 11 | imim2i 12 | . . . . . . 7 |
13 | 12 | com23 78 | . . . . . 6 |
14 | 13 | alimi 1443 | . . . . 5 |
15 | 19.21t 1570 | . . . . . 6 | |
16 | 15 | biimpa 294 | . . . . 5 |
17 | 14, 16 | sylan2 284 | . . . 4 |
18 | 17 | 3adant1 1005 | . . 3 |
19 | sbc6g 2975 | . . . 4 | |
20 | 19 | 3ad2ant1 1008 | . . 3 |
21 | 18, 20 | sylibrd 168 | . 2 |
22 | 10, 21 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wal 1341 wceq 1343 wnf 1448 wex 1480 wcel 2136 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbciegf 2982 sbciedf 2986 |
Copyright terms: Public domain | W3C validator |