ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqal1 Unicode version

Theorem cdeqal1 2968
Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqal1  |- CondEq ( x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable groups:    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cdeqal1
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 2963 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32cbvalv 1929 . 2  |-  ( A. x ph  <->  A. y ps )
43cdeqth 2964 1  |- CondEq ( x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362  CondEqwcdeq 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cdeq 2961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator