ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv Unicode version

Theorem cbvalv 1964
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvalv  |-  ( A. x ph  <->  A. y ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1572 . 2  |-  ( ph  ->  A. y ph )
2 ax-17 1572 . 2  |-  ( ps 
->  A. x ps )
3 cbvalv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvalh 1799 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nfcjust  2360  cdeqal1  3019  dfss4st  3437  zfpow  4259  tfisi  4679  acexmid  6000  tfrlem3-2d  6458  tfrlemi1  6478  tfrexlem  6480  tfr1onlemaccex  6494  tfrcllemaccex  6507  findcard  7050  fisseneq  7096  genprndl  7708  genprndu  7709  zfz1iso  11063
  Copyright terms: Public domain W3C validator