ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv Unicode version

Theorem cbvalv 1917
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvalv  |-  ( A. x ph  <->  A. y ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1526 . 2  |-  ( ph  ->  A. y ph )
2 ax-17 1526 . 2  |-  ( ps 
->  A. x ps )
3 cbvalv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvalh 1753 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nfcjust  2307  cdeqal1  2953  dfss4st  3368  zfpow  4175  tfisi  4586  acexmid  5873  tfrlem3-2d  6312  tfrlemi1  6332  tfrexlem  6334  tfr1onlemaccex  6348  tfrcllemaccex  6361  findcard  6887  fisseneq  6930  genprndl  7519  genprndu  7520  zfz1iso  10820
  Copyright terms: Public domain W3C validator