ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv Unicode version

Theorem cbvalv 1905
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvalv  |-  ( A. x ph  <->  A. y ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1514 . 2  |-  ( ph  ->  A. y ph )
2 ax-17 1514 . 2  |-  ( ps 
->  A. x ps )
3 cbvalv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvalh 1741 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfcjust  2296  cdeqal1  2942  dfss4st  3355  zfpow  4154  tfisi  4564  acexmid  5841  tfrlem3-2d  6280  tfrlemi1  6300  tfrexlem  6302  tfr1onlemaccex  6316  tfrcllemaccex  6329  findcard  6854  fisseneq  6897  genprndl  7462  genprndu  7463  zfz1iso  10754
  Copyright terms: Public domain W3C validator