ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2b Unicode version

Theorem con2b 673
Description: Contraposition. Bidirectional version of con2 646. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
con2b  |-  ( (
ph  ->  -.  ps )  <->  ( ps  ->  -.  ph )
)

Proof of Theorem con2b
StepHypRef Expression
1 con2 646 . 2  |-  ( (
ph  ->  -.  ps )  ->  ( ps  ->  -.  ph ) )
2 con2 646 . 2  |-  ( ( ps  ->  -.  ph )  ->  ( ph  ->  -.  ps ) )
31, 2impbii 126 1  |-  ( (
ph  ->  -.  ps )  <->  ( ps  ->  -.  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mt2bi  688  pm4.15  699  dfdif3  3314  ssconb  3337  disjsn  3728  isprm3  12635
  Copyright terms: Public domain W3C validator