ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbi Unicode version

Theorem mtbi 660
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1  |-  -.  ph
mtbi.2  |-  ( ph  <->  ps )
Assertion
Ref Expression
mtbi  |-  -.  ps

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2  |-  -.  ph
2 mtbi.2 . . 3  |-  ( ph  <->  ps )
32biimpri 132 . 2  |-  ( ps 
->  ph )
41, 3mto 652 1  |-  -.  ps
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mtbir  661  vnex  4097  onsucelsucexmid  4491  dtruex  4520  dmsn0  5055  php5  6805  exmidonfinlem  7130  ndvdsi  11836  nprmi  12016  unennn  12196  bj-vprc  13542  bj-vnex  13544  trirec0xor  13687
  Copyright terms: Public domain W3C validator