Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbi | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | |
mtbi.2 |
Ref | Expression |
---|---|
mtbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 | |
2 | mtbi.2 | . . 3 | |
3 | 2 | biimpri 132 | . 2 |
4 | 1, 3 | mto 657 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mtbir 666 vnex 4120 onsucelsucexmid 4514 dtruex 4543 dmsn0 5078 php5 6836 exmidonfinlem 7170 ndvdsi 11892 nprmi 12078 unennn 12352 bj-vprc 13931 bj-vnex 13933 trirec0xor 14077 |
Copyright terms: Public domain | W3C validator |