| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mtbi | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| mtbi.1 | 
 | 
| mtbi.2 | 
 | 
| Ref | Expression | 
|---|---|
| mtbi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mtbi.1 | 
. 2
 | |
| 2 | mtbi.2 | 
. . 3
 | |
| 3 | 2 | biimpri 133 | 
. 2
 | 
| 4 | 1, 3 | mto 663 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mtbir 672 vnex 4164 onsucelsucexmid 4566 dtruex 4595 dmsn0 5137 php5 6919 exmidonfinlem 7260 ndvdsi 12098 nprmi 12292 dec2dvds 12580 dec5dvds2 12582 unennn 12614 bj-vprc 15542 bj-vnex 15544 trirec0xor 15689 | 
| Copyright terms: Public domain | W3C validator |