![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbi | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 |
![]() ![]() ![]() |
mtbi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbi |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 |
. 2
![]() ![]() ![]() | |
2 | mtbi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mto 663 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mtbir 672 vnex 4160 onsucelsucexmid 4562 dtruex 4591 dmsn0 5133 php5 6914 exmidonfinlem 7253 ndvdsi 12074 nprmi 12262 unennn 12554 bj-vprc 15388 bj-vnex 15390 trirec0xor 15535 |
Copyright terms: Public domain | W3C validator |