| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdif3 | Unicode version | ||
| Description: Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| dfdif3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3165 |
. 2
| |
| 2 | a9ev 1711 |
. . . . . . 7
| |
| 3 | 2 | biantrur 303 |
. . . . . 6
|
| 4 | 19.41v 1917 |
. . . . . 6
| |
| 5 | 3, 4 | bitr4i 187 |
. . . . 5
|
| 6 | sb56 1900 |
. . . . 5
| |
| 7 | equcom 1720 |
. . . . . . . 8
| |
| 8 | 7 | imbi1i 238 |
. . . . . . 7
|
| 9 | eleq1w 2257 |
. . . . . . . . . 10
| |
| 10 | 9 | notbid 668 |
. . . . . . . . 9
|
| 11 | 10 | pm5.74i 180 |
. . . . . . . 8
|
| 12 | con2b 670 |
. . . . . . . 8
| |
| 13 | df-ne 2368 |
. . . . . . . . . 10
| |
| 14 | 13 | bicomi 132 |
. . . . . . . . 9
|
| 15 | 14 | imbi2i 226 |
. . . . . . . 8
|
| 16 | 11, 12, 15 | 3bitri 206 |
. . . . . . 7
|
| 17 | 8, 16 | bitri 184 |
. . . . . 6
|
| 18 | 17 | albii 1484 |
. . . . 5
|
| 19 | 5, 6, 18 | 3bitri 206 |
. . . 4
|
| 20 | df-ral 2480 |
. . . 4
| |
| 21 | 19, 20 | bitr4i 187 |
. . 3
|
| 22 | 21 | rabbii 2749 |
. 2
|
| 23 | 1, 22 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ne 2368 df-ral 2480 df-rab 2484 df-dif 3159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |