| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssconb | Unicode version | ||
| Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| ssconb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 |
. . . . . . 7
| |
| 2 | ssel 3178 |
. . . . . . 7
| |
| 3 | pm5.1 601 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . . . . 6
|
| 5 | con2b 670 |
. . . . . . 7
| |
| 6 | 5 | a1i 9 |
. . . . . 6
|
| 7 | 4, 6 | anbi12d 473 |
. . . . 5
|
| 8 | jcab 603 |
. . . . 5
| |
| 9 | jcab 603 |
. . . . 5
| |
| 10 | 7, 8, 9 | 3bitr4g 223 |
. . . 4
|
| 11 | eldif 3166 |
. . . . 5
| |
| 12 | 11 | imbi2i 226 |
. . . 4
|
| 13 | eldif 3166 |
. . . . 5
| |
| 14 | 13 | imbi2i 226 |
. . . 4
|
| 15 | 10, 12, 14 | 3bitr4g 223 |
. . 3
|
| 16 | 15 | albidv 1838 |
. 2
|
| 17 | ssalel 3172 |
. 2
| |
| 18 | ssalel 3172 |
. 2
| |
| 19 | 16, 17, 18 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sbthlem1 7032 sbthlem2 7033 setscom 12743 |
| Copyright terms: Public domain | W3C validator |