| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssconb | Unicode version | ||
| Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| ssconb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | 
. . . . . . 7
 | |
| 2 | ssel 3177 | 
. . . . . . 7
 | |
| 3 | pm5.1 601 | 
. . . . . . 7
 | |
| 4 | 1, 2, 3 | syl2an 289 | 
. . . . . 6
 | 
| 5 | con2b 670 | 
. . . . . . 7
 | |
| 6 | 5 | a1i 9 | 
. . . . . 6
 | 
| 7 | 4, 6 | anbi12d 473 | 
. . . . 5
 | 
| 8 | jcab 603 | 
. . . . 5
 | |
| 9 | jcab 603 | 
. . . . 5
 | |
| 10 | 7, 8, 9 | 3bitr4g 223 | 
. . . 4
 | 
| 11 | eldif 3166 | 
. . . . 5
 | |
| 12 | 11 | imbi2i 226 | 
. . . 4
 | 
| 13 | eldif 3166 | 
. . . . 5
 | |
| 14 | 13 | imbi2i 226 | 
. . . 4
 | 
| 15 | 10, 12, 14 | 3bitr4g 223 | 
. . 3
 | 
| 16 | 15 | albidv 1838 | 
. 2
 | 
| 17 | dfss2 3172 | 
. 2
 | |
| 18 | dfss2 3172 | 
. 2
 | |
| 19 | 16, 17, 18 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sbthlem1 7023 sbthlem2 7024 setscom 12718 | 
| Copyright terms: Public domain | W3C validator |