| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 |
|
| 3bitr3g.2 |
|
| 3bitr3g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 |
. . 3
| |
| 2 | 3bitr3g.1 |
. . 3
| |
| 3 | 1, 2 | bitr3id 194 |
. 2
|
| 4 | 3bitr3g.3 |
. 2
| |
| 5 | 3, 4 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 877 sbal1yz 2029 sbal1 2030 dfsbcq2 3001 iindif2m 3995 opeqex 4295 rabxfrd 4517 eqbrrdv 4773 eqbrrdiv 4774 opelco2g 4847 opelcnvg 4859 ralrnmpt 5724 rexrnmpt 5725 fliftcnv 5866 eusvobj2 5932 f1od2 6323 ottposg 6343 ercnv 6643 exmidpw 7007 djuf1olem 7157 fzen 10167 fihasheq0 10940 divalgb 12269 isprm3 12473 eldvap 15187 |
| Copyright terms: Public domain | W3C validator |