| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 |
|
| 3bitr3g.2 |
|
| 3bitr3g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 |
. . 3
| |
| 2 | 3bitr3g.1 |
. . 3
| |
| 3 | 1, 2 | bitr3id 194 |
. 2
|
| 4 | 3bitr3g.3 |
. 2
| |
| 5 | 3, 4 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 876 sbal1yz 2020 sbal1 2021 dfsbcq2 2992 iindif2m 3984 opeqex 4282 rabxfrd 4504 eqbrrdv 4760 eqbrrdiv 4761 opelco2g 4834 opelcnvg 4846 ralrnmpt 5704 rexrnmpt 5705 fliftcnv 5842 eusvobj2 5908 f1od2 6293 ottposg 6313 ercnv 6613 exmidpw 6969 djuf1olem 7119 fzen 10118 fihasheq0 10885 divalgb 12090 isprm3 12286 eldvap 14918 |
| Copyright terms: Public domain | W3C validator |