| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 |
|
| 3bitr3g.2 |
|
| 3bitr3g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 |
. . 3
| |
| 2 | 3bitr3g.1 |
. . 3
| |
| 3 | 1, 2 | bitr3id 194 |
. 2
|
| 4 | 3bitr3g.3 |
. 2
| |
| 5 | 3, 4 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 877 sbal1yz 2029 sbal1 2030 dfsbcq2 3001 iindif2m 3995 opeqex 4294 rabxfrd 4516 eqbrrdv 4772 eqbrrdiv 4773 opelco2g 4846 opelcnvg 4858 ralrnmpt 5722 rexrnmpt 5723 fliftcnv 5864 eusvobj2 5930 f1od2 6321 ottposg 6341 ercnv 6641 exmidpw 7005 djuf1olem 7155 fzen 10165 fihasheq0 10938 divalgb 12236 isprm3 12440 eldvap 15154 |
| Copyright terms: Public domain | W3C validator |