ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g Unicode version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1  |-  ( ph  ->  ( ps  <->  ch )
)
3bitr3g.2  |-  ( ps  <->  th )
3bitr3g.3  |-  ( ch  <->  ta )
Assertion
Ref Expression
3bitr3g  |-  ( ph  ->  ( th  <->  ta )
)

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3  |-  ( ps  <->  th )
2 3bitr3g.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2bitr3id 194 . 2  |-  ( ph  ->  ( th  <->  ch )
)
4 3bitr3g.3 . 2  |-  ( ch  <->  ta )
53, 4bitrdi 196 1  |-  ( ph  ->  ( th  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  876  sbal1yz  2017  sbal1  2018  dfsbcq2  2988  iindif2m  3980  opeqex  4278  rabxfrd  4500  eqbrrdv  4756  eqbrrdiv  4757  opelco2g  4830  opelcnvg  4842  ralrnmpt  5700  rexrnmpt  5701  fliftcnv  5838  eusvobj2  5904  f1od2  6288  ottposg  6308  ercnv  6608  exmidpw  6964  djuf1olem  7112  fzen  10109  fihasheq0  10864  divalgb  12066  isprm3  12256  eldvap  14836
  Copyright terms: Public domain W3C validator