ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3g Unicode version

Theorem 3bitr3g 222
Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1  |-  ( ph  ->  ( ps  <->  ch )
)
3bitr3g.2  |-  ( ps  <->  th )
3bitr3g.3  |-  ( ch  <->  ta )
Assertion
Ref Expression
3bitr3g  |-  ( ph  ->  ( th  <->  ta )
)

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3  |-  ( ps  <->  th )
2 3bitr3g.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2bitr3id 194 . 2  |-  ( ph  ->  ( th  <->  ch )
)
4 3bitr3g.3 . 2  |-  ( ch  <->  ta )
53, 4bitrdi 196 1  |-  ( ph  ->  ( th  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  con2bidc  877  sbal1yz  2030  sbal1  2031  dfsbcq2  3008  iindif2m  4009  opeqex  4312  rabxfrd  4534  eqbrrdv  4790  eqbrrdiv  4791  opelco2g  4864  opelcnvg  4876  ralrnmpt  5745  rexrnmpt  5746  fliftcnv  5887  eusvobj2  5953  f1od2  6344  ottposg  6364  ercnv  6664  exmidpw  7031  djuf1olem  7181  fzen  10200  fihasheq0  10975  divalgb  12351  isprm3  12555  eldvap  15269
  Copyright terms: Public domain W3C validator