| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 |
|
| 3bitr3g.2 |
|
| 3bitr3g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 |
. . 3
| |
| 2 | 3bitr3g.1 |
. . 3
| |
| 3 | 1, 2 | bitr3id 194 |
. 2
|
| 4 | 3bitr3g.3 |
. 2
| |
| 5 | 3, 4 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 880 sbal1yz 2052 sbal1 2053 dfsbcq2 3031 iindif2m 4033 opeqex 4336 rabxfrd 4560 eqbrrdv 4816 eqbrrdiv 4817 opelco2g 4890 opelcnvg 4902 ralrnmpt 5777 rexrnmpt 5778 fliftcnv 5919 eusvobj2 5987 f1od2 6381 ottposg 6401 ercnv 6701 exmidpw 7070 djuf1olem 7220 fzen 10239 fihasheq0 11015 divalgb 12436 isprm3 12640 eldvap 15356 |
| Copyright terms: Public domain | W3C validator |