| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version | ||
| Description: More general version of 3bitr3i 210. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| 3bitr3g.1 |
|
| 3bitr3g.2 |
|
| 3bitr3g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3g.2 |
. . 3
| |
| 2 | 3bitr3g.1 |
. . 3
| |
| 3 | 1, 2 | bitr3id 194 |
. 2
|
| 4 | 3bitr3g.3 |
. 2
| |
| 5 | 3, 4 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: con2bidc 877 sbal1yz 2030 sbal1 2031 dfsbcq2 3008 iindif2m 4009 opeqex 4312 rabxfrd 4534 eqbrrdv 4790 eqbrrdiv 4791 opelco2g 4864 opelcnvg 4876 ralrnmpt 5745 rexrnmpt 5746 fliftcnv 5887 eusvobj2 5953 f1od2 6344 ottposg 6364 ercnv 6664 exmidpw 7031 djuf1olem 7181 fzen 10200 fihasheq0 10975 divalgb 12351 isprm3 12555 eldvap 15269 |
| Copyright terms: Public domain | W3C validator |