Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3g | Unicode version |
Description: More general version of 3bitr3i 209. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | |
3bitr3g.2 | |
3bitr3g.3 |
Ref | Expression |
---|---|
3bitr3g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 | |
2 | 3bitr3g.1 | . . 3 | |
3 | 1, 2 | bitr3id 193 | . 2 |
4 | 3bitr3g.3 | . 2 | |
5 | 3, 4 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: con2bidc 870 sbal1yz 1994 sbal1 1995 dfsbcq2 2958 iindif2m 3940 opeqex 4234 rabxfrd 4454 eqbrrdv 4708 eqbrrdiv 4709 opelco2g 4779 opelcnvg 4791 ralrnmpt 5638 rexrnmpt 5639 fliftcnv 5774 eusvobj2 5839 f1od2 6214 ottposg 6234 ercnv 6534 exmidpw 6886 djuf1olem 7030 fzen 9999 fihasheq0 10728 divalgb 11884 isprm3 12072 eldvap 13445 |
Copyright terms: Public domain | W3C validator |