ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a2i Unicode version

Theorem a2i 11
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
a2i  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ch )
)

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 ax-2 7 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
31, 2ax-mp 5 1  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-2 7
This theorem is referenced by:  imim2i  12  mpd  13  sylcom  28  pm2.43  53  ancl  318  ancr  321  anc2r  328  pm2.65  659  pm2.18dc  855  con4biddc  857  hbim1  1568  sbcof2  1808  ralimia  2536  ceqsalg  2763  rspct  2832  elabgt  2876  fvmptt  5599  ordiso2  7024  bj-exlimmp  14079  bj-rspgt  14096  bj-indint  14241
  Copyright terms: Public domain W3C validator