ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a2i Unicode version

Theorem a2i 11
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
a2i  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ch )
)

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 ax-2 7 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
31, 2ax-mp 5 1  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-2 7
This theorem is referenced by:  imim2i  12  mpd  13  sylcom  28  pm2.43  53  ancl  318  ancr  321  anc2r  328  pm2.65  659  pm2.18dc  855  con4biddc  857  hbim1  1570  sbcof2  1810  ralimia  2538  ceqsalg  2767  rspct  2836  elabgt  2880  fvmptt  5609  ordiso2  7036  bj-exlimmp  14606  bj-rspgt  14623  bj-indint  14768
  Copyright terms: Public domain W3C validator