ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisj1 Unicode version

Theorem nfdisj1 4008
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1  |-  F/ xDisj  x  e.  A  B

Proof of Theorem nfdisj1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-disj 3996 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
2 nfrmo1 2663 . . 3  |-  F/ x E* x  e.  A  y  e.  B
32nfal 1587 . 2  |-  F/ x A. y E* x  e.  A  y  e.  B
41, 3nfxfr 1485 1  |-  F/ xDisj  x  e.  A  B
Colors of variables: wff set class
Syntax hints:   A.wal 1362   F/wnf 1471    e. wcel 2160   E*wrmo 2471  Disj wdisj 3995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-eu 2041  df-mo 2042  df-rmo 2476  df-disj 3996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator