ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvdisj Unicode version

Theorem cbvdisj 3991
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
cbvdisj.1  |-  F/_ y B
cbvdisj.2  |-  F/_ x C
cbvdisj.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvdisj  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbvdisj
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvdisj.1 . . . . 5  |-  F/_ y B
21nfcri 2313 . . . 4  |-  F/ y  z  e.  B
3 cbvdisj.2 . . . . 5  |-  F/_ x C
43nfcri 2313 . . . 4  |-  F/ x  z  e.  C
5 cbvdisj.3 . . . . 5  |-  ( x  =  y  ->  B  =  C )
65eleq2d 2247 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
72, 4, 6cbvrmo 2703 . . 3  |-  ( E* x  e.  A  z  e.  B  <->  E* y  e.  A  z  e.  C )
87albii 1470 . 2  |-  ( A. z E* x  e.  A  z  e.  B  <->  A. z E* y  e.  A  z  e.  C )
9 df-disj 3982 . 2  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
10 df-disj 3982 . 2  |-  (Disj  y  e.  A  C  <->  A. z E* y  e.  A  z  e.  C )
118, 9, 103bitr4i 212 1  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   F/_wnfc 2306   E*wrmo 2458  Disj wdisj 3981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-rmo 2463  df-disj 3982
This theorem is referenced by:  cbvdisjv  3992  disjnims  3996
  Copyright terms: Public domain W3C validator