| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjnim | Unicode version | ||
| Description: If a collection |
| Ref | Expression |
|---|---|
| disjnim.1 |
|
| Ref | Expression |
|---|---|
| disjnim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj 4024 |
. 2
| |
| 2 | disjnim.1 |
. . . . . . 7
| |
| 3 | 2 | eleq2d 2276 |
. . . . . 6
|
| 4 | 3 | rmo4 2967 |
. . . . 5
|
| 5 | 4 | albii 1494 |
. . . 4
|
| 6 | ralcom4 2795 |
. . . 4
| |
| 7 | 5, 6 | bitr4i 187 |
. . 3
|
| 8 | ralcom4 2795 |
. . . . 5
| |
| 9 | 19.23v 1907 |
. . . . . . . . 9
| |
| 10 | 9 | biimpi 120 |
. . . . . . . 8
|
| 11 | 10 | necon3ad 2419 |
. . . . . . 7
|
| 12 | notm0 3482 |
. . . . . . . 8
| |
| 13 | elin 3357 |
. . . . . . . . . 10
| |
| 14 | 13 | exbii 1629 |
. . . . . . . . 9
|
| 15 | 14 | notbii 670 |
. . . . . . . 8
|
| 16 | 12, 15 | bitr3i 186 |
. . . . . . 7
|
| 17 | 11, 16 | imbitrrdi 162 |
. . . . . 6
|
| 18 | 17 | ralimi 2570 |
. . . . 5
|
| 19 | 8, 18 | sylbir 135 |
. . . 4
|
| 20 | 19 | ralimi 2570 |
. . 3
|
| 21 | 7, 20 | sylbi 121 |
. 2
|
| 22 | 1, 21 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rmo 2493 df-v 2775 df-dif 3169 df-in 3173 df-nul 3462 df-disj 4024 |
| This theorem is referenced by: disjnims 4038 |
| Copyright terms: Public domain | W3C validator |