ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdisj2 Unicode version

Theorem dfdisj2 3968
Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
dfdisj2  |-  (Disj  x  e.  A  B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfdisj2
StepHypRef Expression
1 df-disj 3967 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
2 df-rmo 2456 . . 3  |-  ( E* x  e.  A  y  e.  B  <->  E* x
( x  e.  A  /\  y  e.  B
) )
32albii 1463 . 2  |-  ( A. y E* x  e.  A  y  e.  B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
41, 3bitri 183 1  |-  (Disj  x  e.  A  B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1346   E*wmo 2020    e. wcel 2141   E*wrmo 2451  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-rmo 2456  df-disj 3967
This theorem is referenced by:  disjss1  3972  nfdisjv  3978  invdisj  3983  sndisj  3985  disjxsn  3987
  Copyright terms: Public domain W3C validator