ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 Unicode version

Theorem disjxp1 6345
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjxp1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem disjxp1
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6274 . . . . . . 7  |-  ( y  e.  ( B  X.  C )  ->  ( 1st `  y )  e.  B )
2 xp1st 6274 . . . . . . 7  |-  ( y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )  ->  ( 1st `  y )  e. 
[_ w  /  x ]_ B )
3 disjxp1.1 . . . . . . . . . . . 12  |-  ( ph  -> Disj  x  e.  A  B
)
4 df-disj 4036 . . . . . . . . . . . 12  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
53, 4sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. z E* x  e.  A  z  e.  B )
6 1stexg 6276 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
76elv 2780 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
8 eleq1 2270 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  y
)  ->  ( z  e.  B  <->  ( 1st `  y
)  e.  B ) )
98rmobidv 2698 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  y
)  ->  ( E* x  e.  A  z  e.  B  <->  E* x  e.  A  ( 1st `  y )  e.  B ) )
107, 9spcv 2874 . . . . . . . . . . 11  |-  ( A. z E* x  e.  A  z  e.  B  ->  E* x  e.  A  ( 1st `  y )  e.  B )
115, 10syl 14 . . . . . . . . . 10  |-  ( ph  ->  E* x  e.  A  ( 1st `  y )  e.  B )
12 nfcv 2350 . . . . . . . . . . 11  |-  F/_ x A
13 nfcv 2350 . . . . . . . . . . 11  |-  F/_ w A
14 nfcsb1v 3134 . . . . . . . . . . . 12  |-  F/_ x [_ w  /  x ]_ B
1514nfel2 2363 . . . . . . . . . . 11  |-  F/ x
( 1st `  y
)  e.  [_ w  /  x ]_ B
16 csbeq1a 3110 . . . . . . . . . . . 12  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
1716eleq2d 2277 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  y
)  e.  B  <->  ( 1st `  y )  e.  [_ w  /  x ]_ B
) )
1812, 13, 15, 17rmo4f 2978 . . . . . . . . . 10  |-  ( E* x  e.  A  ( 1st `  y )  e.  B  <->  A. x  e.  A  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
1911, 18sylib 122 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( ( 1st `  y )  e.  B  /\  ( 1st `  y
)  e.  [_ w  /  x ]_ B )  ->  x  =  w ) )
2019r19.21bi 2596 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
2120r19.21bi 2596 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
221, 2, 21syl2ani 408 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( y  e.  ( B  X.  C )  /\  y  e.  (
[_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
2322ralrimiva 2581 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
2423ralrimiva 2581 . . . 4  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( y  e.  ( B  X.  C
)  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
25 nfcsb1v 3134 . . . . . . 7  |-  F/_ x [_ w  /  x ]_ C
2614, 25nfxp 4720 . . . . . 6  |-  F/_ x
( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
2726nfel2 2363 . . . . 5  |-  F/ x  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
28 csbeq1a 3110 . . . . . . 7  |-  ( x  =  w  ->  C  =  [_ w  /  x ]_ C )
2916, 28xpeq12d 4718 . . . . . 6  |-  ( x  =  w  ->  ( B  X.  C )  =  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C
) )
3029eleq2d 2277 . . . . 5  |-  ( x  =  w  ->  (
y  e.  ( B  X.  C )  <->  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) ) )
3112, 13, 27, 30rmo4f 2978 . . . 4  |-  ( E* x  e.  A  y  e.  ( B  X.  C )  <->  A. x  e.  A  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
3224, 31sylibr 134 . . 3  |-  ( ph  ->  E* x  e.  A  y  e.  ( B  X.  C ) )
3332alrimiv 1898 . 2  |-  ( ph  ->  A. y E* x  e.  A  y  e.  ( B  X.  C
) )
34 df-disj 4036 . 2  |-  (Disj  x  e.  A  ( B  X.  C )  <->  A. y E* x  e.  A  y  e.  ( B  X.  C ) )
3533, 34sylibr 134 1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2178   A.wral 2486   E*wrmo 2489   _Vcvv 2776   [_csb 3101  Disj wdisj 4035    X. cxp 4691   ` cfv 5290   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rmo 2494  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249
This theorem is referenced by:  disjsnxp  6346
  Copyright terms: Public domain W3C validator