Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version |
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjxp1.1 | Disj |
Ref | Expression |
---|---|
disjxp1 | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 6144 | . . . . . . 7 | |
2 | xp1st 6144 | . . . . . . 7 | |
3 | disjxp1.1 | . . . . . . . . . . . 12 Disj | |
4 | df-disj 3967 | . . . . . . . . . . . 12 Disj | |
5 | 3, 4 | sylib 121 | . . . . . . . . . . 11 |
6 | 1stexg 6146 | . . . . . . . . . . . . 13 | |
7 | 6 | elv 2734 | . . . . . . . . . . . 12 |
8 | eleq1 2233 | . . . . . . . . . . . . 13 | |
9 | 8 | rmobidv 2658 | . . . . . . . . . . . 12 |
10 | 7, 9 | spcv 2824 | . . . . . . . . . . 11 |
11 | 5, 10 | syl 14 | . . . . . . . . . 10 |
12 | nfcv 2312 | . . . . . . . . . . 11 | |
13 | nfcv 2312 | . . . . . . . . . . 11 | |
14 | nfcsb1v 3082 | . . . . . . . . . . . 12 | |
15 | 14 | nfel2 2325 | . . . . . . . . . . 11 |
16 | csbeq1a 3058 | . . . . . . . . . . . 12 | |
17 | 16 | eleq2d 2240 | . . . . . . . . . . 11 |
18 | 12, 13, 15, 17 | rmo4f 2928 | . . . . . . . . . 10 |
19 | 11, 18 | sylib 121 | . . . . . . . . 9 |
20 | 19 | r19.21bi 2558 | . . . . . . . 8 |
21 | 20 | r19.21bi 2558 | . . . . . . 7 |
22 | 1, 2, 21 | syl2ani 406 | . . . . . 6 |
23 | 22 | ralrimiva 2543 | . . . . 5 |
24 | 23 | ralrimiva 2543 | . . . 4 |
25 | nfcsb1v 3082 | . . . . . . 7 | |
26 | 14, 25 | nfxp 4638 | . . . . . 6 |
27 | 26 | nfel2 2325 | . . . . 5 |
28 | csbeq1a 3058 | . . . . . . 7 | |
29 | 16, 28 | xpeq12d 4636 | . . . . . 6 |
30 | 29 | eleq2d 2240 | . . . . 5 |
31 | 12, 13, 27, 30 | rmo4f 2928 | . . . 4 |
32 | 24, 31 | sylibr 133 | . . 3 |
33 | 32 | alrimiv 1867 | . 2 |
34 | df-disj 3967 | . 2 Disj | |
35 | 33, 34 | sylibr 133 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wcel 2141 wral 2448 wrmo 2451 cvv 2730 csb 3049 Disj wdisj 3966 cxp 4609 cfv 5198 c1st 6117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rmo 2456 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 |
This theorem is referenced by: disjsnxp 6216 |
Copyright terms: Public domain | W3C validator |