ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 Unicode version

Theorem disjxp1 6289
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjxp1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem disjxp1
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6218 . . . . . . 7  |-  ( y  e.  ( B  X.  C )  ->  ( 1st `  y )  e.  B )
2 xp1st 6218 . . . . . . 7  |-  ( y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )  ->  ( 1st `  y )  e. 
[_ w  /  x ]_ B )
3 disjxp1.1 . . . . . . . . . . . 12  |-  ( ph  -> Disj  x  e.  A  B
)
4 df-disj 4007 . . . . . . . . . . . 12  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
53, 4sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. z E* x  e.  A  z  e.  B )
6 1stexg 6220 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
76elv 2764 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
8 eleq1 2256 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  y
)  ->  ( z  e.  B  <->  ( 1st `  y
)  e.  B ) )
98rmobidv 2683 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  y
)  ->  ( E* x  e.  A  z  e.  B  <->  E* x  e.  A  ( 1st `  y )  e.  B ) )
107, 9spcv 2854 . . . . . . . . . . 11  |-  ( A. z E* x  e.  A  z  e.  B  ->  E* x  e.  A  ( 1st `  y )  e.  B )
115, 10syl 14 . . . . . . . . . 10  |-  ( ph  ->  E* x  e.  A  ( 1st `  y )  e.  B )
12 nfcv 2336 . . . . . . . . . . 11  |-  F/_ x A
13 nfcv 2336 . . . . . . . . . . 11  |-  F/_ w A
14 nfcsb1v 3113 . . . . . . . . . . . 12  |-  F/_ x [_ w  /  x ]_ B
1514nfel2 2349 . . . . . . . . . . 11  |-  F/ x
( 1st `  y
)  e.  [_ w  /  x ]_ B
16 csbeq1a 3089 . . . . . . . . . . . 12  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
1716eleq2d 2263 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  y
)  e.  B  <->  ( 1st `  y )  e.  [_ w  /  x ]_ B
) )
1812, 13, 15, 17rmo4f 2958 . . . . . . . . . 10  |-  ( E* x  e.  A  ( 1st `  y )  e.  B  <->  A. x  e.  A  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
1911, 18sylib 122 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( ( 1st `  y )  e.  B  /\  ( 1st `  y
)  e.  [_ w  /  x ]_ B )  ->  x  =  w ) )
2019r19.21bi 2582 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
2120r19.21bi 2582 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
221, 2, 21syl2ani 408 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( y  e.  ( B  X.  C )  /\  y  e.  (
[_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
2322ralrimiva 2567 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
2423ralrimiva 2567 . . . 4  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( y  e.  ( B  X.  C
)  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
25 nfcsb1v 3113 . . . . . . 7  |-  F/_ x [_ w  /  x ]_ C
2614, 25nfxp 4686 . . . . . 6  |-  F/_ x
( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
2726nfel2 2349 . . . . 5  |-  F/ x  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
28 csbeq1a 3089 . . . . . . 7  |-  ( x  =  w  ->  C  =  [_ w  /  x ]_ C )
2916, 28xpeq12d 4684 . . . . . 6  |-  ( x  =  w  ->  ( B  X.  C )  =  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C
) )
3029eleq2d 2263 . . . . 5  |-  ( x  =  w  ->  (
y  e.  ( B  X.  C )  <->  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) ) )
3112, 13, 27, 30rmo4f 2958 . . . 4  |-  ( E* x  e.  A  y  e.  ( B  X.  C )  <->  A. x  e.  A  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
3224, 31sylibr 134 . . 3  |-  ( ph  ->  E* x  e.  A  y  e.  ( B  X.  C ) )
3332alrimiv 1885 . 2  |-  ( ph  ->  A. y E* x  e.  A  y  e.  ( B  X.  C
) )
34 df-disj 4007 . 2  |-  (Disj  x  e.  A  ( B  X.  C )  <->  A. y E* x  e.  A  y  e.  ( B  X.  C ) )
3533, 34sylibr 134 1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E*wrmo 2475   _Vcvv 2760   [_csb 3080  Disj wdisj 4006    X. cxp 4657   ` cfv 5254   1stc1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rmo 2480  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193
This theorem is referenced by:  disjsnxp  6290
  Copyright terms: Public domain W3C validator