| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version | ||
| Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjxp1.1 |
|
| Ref | Expression |
|---|---|
| disjxp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 6309 |
. . . . . . 7
| |
| 2 | xp1st 6309 |
. . . . . . 7
| |
| 3 | disjxp1.1 |
. . . . . . . . . . . 12
| |
| 4 | df-disj 4059 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | sylib 122 |
. . . . . . . . . . 11
|
| 6 | 1stexg 6311 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | elv 2803 |
. . . . . . . . . . . 12
|
| 8 | eleq1 2292 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | rmobidv 2721 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | spcv 2897 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 13 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 14 | nfcsb1v 3157 |
. . . . . . . . . . . 12
| |
| 15 | 14 | nfel2 2385 |
. . . . . . . . . . 11
|
| 16 | csbeq1a 3133 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eleq2d 2299 |
. . . . . . . . . . 11
|
| 18 | 12, 13, 15, 17 | rmo4f 3001 |
. . . . . . . . . 10
|
| 19 | 11, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 19 | r19.21bi 2618 |
. . . . . . . 8
|
| 21 | 20 | r19.21bi 2618 |
. . . . . . 7
|
| 22 | 1, 2, 21 | syl2ani 408 |
. . . . . 6
|
| 23 | 22 | ralrimiva 2603 |
. . . . 5
|
| 24 | 23 | ralrimiva 2603 |
. . . 4
|
| 25 | nfcsb1v 3157 |
. . . . . . 7
| |
| 26 | 14, 25 | nfxp 4745 |
. . . . . 6
|
| 27 | 26 | nfel2 2385 |
. . . . 5
|
| 28 | csbeq1a 3133 |
. . . . . . 7
| |
| 29 | 16, 28 | xpeq12d 4743 |
. . . . . 6
|
| 30 | 29 | eleq2d 2299 |
. . . . 5
|
| 31 | 12, 13, 27, 30 | rmo4f 3001 |
. . . 4
|
| 32 | 24, 31 | sylibr 134 |
. . 3
|
| 33 | 32 | alrimiv 1920 |
. 2
|
| 34 | df-disj 4059 |
. 2
| |
| 35 | 33, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rmo 2516 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-1st 6284 |
| This theorem is referenced by: disjsnxp 6381 |
| Copyright terms: Public domain | W3C validator |