| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version | ||
| Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjxp1.1 |
|
| Ref | Expression |
|---|---|
| disjxp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 6274 |
. . . . . . 7
| |
| 2 | xp1st 6274 |
. . . . . . 7
| |
| 3 | disjxp1.1 |
. . . . . . . . . . . 12
| |
| 4 | df-disj 4036 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | sylib 122 |
. . . . . . . . . . 11
|
| 6 | 1stexg 6276 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | elv 2780 |
. . . . . . . . . . . 12
|
| 8 | eleq1 2270 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | rmobidv 2698 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | spcv 2874 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | nfcv 2350 |
. . . . . . . . . . 11
| |
| 13 | nfcv 2350 |
. . . . . . . . . . 11
| |
| 14 | nfcsb1v 3134 |
. . . . . . . . . . . 12
| |
| 15 | 14 | nfel2 2363 |
. . . . . . . . . . 11
|
| 16 | csbeq1a 3110 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eleq2d 2277 |
. . . . . . . . . . 11
|
| 18 | 12, 13, 15, 17 | rmo4f 2978 |
. . . . . . . . . 10
|
| 19 | 11, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 19 | r19.21bi 2596 |
. . . . . . . 8
|
| 21 | 20 | r19.21bi 2596 |
. . . . . . 7
|
| 22 | 1, 2, 21 | syl2ani 408 |
. . . . . 6
|
| 23 | 22 | ralrimiva 2581 |
. . . . 5
|
| 24 | 23 | ralrimiva 2581 |
. . . 4
|
| 25 | nfcsb1v 3134 |
. . . . . . 7
| |
| 26 | 14, 25 | nfxp 4720 |
. . . . . 6
|
| 27 | 26 | nfel2 2363 |
. . . . 5
|
| 28 | csbeq1a 3110 |
. . . . . . 7
| |
| 29 | 16, 28 | xpeq12d 4718 |
. . . . . 6
|
| 30 | 29 | eleq2d 2277 |
. . . . 5
|
| 31 | 12, 13, 27, 30 | rmo4f 2978 |
. . . 4
|
| 32 | 24, 31 | sylibr 134 |
. . 3
|
| 33 | 32 | alrimiv 1898 |
. 2
|
| 34 | df-disj 4036 |
. 2
| |
| 35 | 33, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rmo 2494 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 df-1st 6249 |
| This theorem is referenced by: disjsnxp 6346 |
| Copyright terms: Public domain | W3C validator |