| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version | ||
| Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjxp1.1 |
|
| Ref | Expression |
|---|---|
| disjxp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 6223 |
. . . . . . 7
| |
| 2 | xp1st 6223 |
. . . . . . 7
| |
| 3 | disjxp1.1 |
. . . . . . . . . . . 12
| |
| 4 | df-disj 4011 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | sylib 122 |
. . . . . . . . . . 11
|
| 6 | 1stexg 6225 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | elv 2767 |
. . . . . . . . . . . 12
|
| 8 | eleq1 2259 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | rmobidv 2686 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | spcv 2858 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 13 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 14 | nfcsb1v 3117 |
. . . . . . . . . . . 12
| |
| 15 | 14 | nfel2 2352 |
. . . . . . . . . . 11
|
| 16 | csbeq1a 3093 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eleq2d 2266 |
. . . . . . . . . . 11
|
| 18 | 12, 13, 15, 17 | rmo4f 2962 |
. . . . . . . . . 10
|
| 19 | 11, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 19 | r19.21bi 2585 |
. . . . . . . 8
|
| 21 | 20 | r19.21bi 2585 |
. . . . . . 7
|
| 22 | 1, 2, 21 | syl2ani 408 |
. . . . . 6
|
| 23 | 22 | ralrimiva 2570 |
. . . . 5
|
| 24 | 23 | ralrimiva 2570 |
. . . 4
|
| 25 | nfcsb1v 3117 |
. . . . . . 7
| |
| 26 | 14, 25 | nfxp 4690 |
. . . . . 6
|
| 27 | 26 | nfel2 2352 |
. . . . 5
|
| 28 | csbeq1a 3093 |
. . . . . . 7
| |
| 29 | 16, 28 | xpeq12d 4688 |
. . . . . 6
|
| 30 | 29 | eleq2d 2266 |
. . . . 5
|
| 31 | 12, 13, 27, 30 | rmo4f 2962 |
. . . 4
|
| 32 | 24, 31 | sylibr 134 |
. . 3
|
| 33 | 32 | alrimiv 1888 |
. 2
|
| 34 | df-disj 4011 |
. 2
| |
| 35 | 33, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rmo 2483 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 |
| This theorem is referenced by: disjsnxp 6295 |
| Copyright terms: Public domain | W3C validator |