ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 Unicode version

Theorem disjxp1 6133
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjxp1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem disjxp1
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6063 . . . . . . 7  |-  ( y  e.  ( B  X.  C )  ->  ( 1st `  y )  e.  B )
2 xp1st 6063 . . . . . . 7  |-  ( y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )  ->  ( 1st `  y )  e. 
[_ w  /  x ]_ B )
3 disjxp1.1 . . . . . . . . . . . 12  |-  ( ph  -> Disj  x  e.  A  B
)
4 df-disj 3907 . . . . . . . . . . . 12  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
53, 4sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  A. z E* x  e.  A  z  e.  B )
6 1stexg 6065 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
76elv 2690 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
8 eleq1 2202 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  y
)  ->  ( z  e.  B  <->  ( 1st `  y
)  e.  B ) )
98rmobidv 2619 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  y
)  ->  ( E* x  e.  A  z  e.  B  <->  E* x  e.  A  ( 1st `  y )  e.  B ) )
107, 9spcv 2779 . . . . . . . . . . 11  |-  ( A. z E* x  e.  A  z  e.  B  ->  E* x  e.  A  ( 1st `  y )  e.  B )
115, 10syl 14 . . . . . . . . . 10  |-  ( ph  ->  E* x  e.  A  ( 1st `  y )  e.  B )
12 nfcv 2281 . . . . . . . . . . 11  |-  F/_ x A
13 nfcv 2281 . . . . . . . . . . 11  |-  F/_ w A
14 nfcsb1v 3035 . . . . . . . . . . . 12  |-  F/_ x [_ w  /  x ]_ B
1514nfel2 2294 . . . . . . . . . . 11  |-  F/ x
( 1st `  y
)  e.  [_ w  /  x ]_ B
16 csbeq1a 3012 . . . . . . . . . . . 12  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
1716eleq2d 2209 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  y
)  e.  B  <->  ( 1st `  y )  e.  [_ w  /  x ]_ B
) )
1812, 13, 15, 17rmo4f 2882 . . . . . . . . . 10  |-  ( E* x  e.  A  ( 1st `  y )  e.  B  <->  A. x  e.  A  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
1911, 18sylib 121 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( ( 1st `  y )  e.  B  /\  ( 1st `  y
)  e.  [_ w  /  x ]_ B )  ->  x  =  w ) )
2019r19.21bi 2520 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
2120r19.21bi 2520 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
221, 2, 21syl2ani 405 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( y  e.  ( B  X.  C )  /\  y  e.  (
[_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
2322ralrimiva 2505 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
2423ralrimiva 2505 . . . 4  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( y  e.  ( B  X.  C
)  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
25 nfcsb1v 3035 . . . . . . 7  |-  F/_ x [_ w  /  x ]_ C
2614, 25nfxp 4566 . . . . . 6  |-  F/_ x
( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
2726nfel2 2294 . . . . 5  |-  F/ x  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
28 csbeq1a 3012 . . . . . . 7  |-  ( x  =  w  ->  C  =  [_ w  /  x ]_ C )
2916, 28xpeq12d 4564 . . . . . 6  |-  ( x  =  w  ->  ( B  X.  C )  =  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C
) )
3029eleq2d 2209 . . . . 5  |-  ( x  =  w  ->  (
y  e.  ( B  X.  C )  <->  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) ) )
3112, 13, 27, 30rmo4f 2882 . . . 4  |-  ( E* x  e.  A  y  e.  ( B  X.  C )  <->  A. x  e.  A  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
3224, 31sylibr 133 . . 3  |-  ( ph  ->  E* x  e.  A  y  e.  ( B  X.  C ) )
3332alrimiv 1846 . 2  |-  ( ph  ->  A. y E* x  e.  A  y  e.  ( B  X.  C
) )
34 df-disj 3907 . 2  |-  (Disj  x  e.  A  ( B  X.  C )  <->  A. y E* x  e.  A  y  e.  ( B  X.  C ) )
3533, 34sylibr 133 1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   E*wrmo 2419   _Vcvv 2686   [_csb 3003  Disj wdisj 3906    X. cxp 4537   ` cfv 5123   1stc1st 6036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rmo 2424  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-1st 6038
This theorem is referenced by:  disjsnxp  6134
  Copyright terms: Public domain W3C validator