Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version |
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjxp1.1 | Disj |
Ref | Expression |
---|---|
disjxp1 | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 6133 | . . . . . . 7 | |
2 | xp1st 6133 | . . . . . . 7 | |
3 | disjxp1.1 | . . . . . . . . . . . 12 Disj | |
4 | df-disj 3960 | . . . . . . . . . . . 12 Disj | |
5 | 3, 4 | sylib 121 | . . . . . . . . . . 11 |
6 | 1stexg 6135 | . . . . . . . . . . . . 13 | |
7 | 6 | elv 2730 | . . . . . . . . . . . 12 |
8 | eleq1 2229 | . . . . . . . . . . . . 13 | |
9 | 8 | rmobidv 2654 | . . . . . . . . . . . 12 |
10 | 7, 9 | spcv 2820 | . . . . . . . . . . 11 |
11 | 5, 10 | syl 14 | . . . . . . . . . 10 |
12 | nfcv 2308 | . . . . . . . . . . 11 | |
13 | nfcv 2308 | . . . . . . . . . . 11 | |
14 | nfcsb1v 3078 | . . . . . . . . . . . 12 | |
15 | 14 | nfel2 2321 | . . . . . . . . . . 11 |
16 | csbeq1a 3054 | . . . . . . . . . . . 12 | |
17 | 16 | eleq2d 2236 | . . . . . . . . . . 11 |
18 | 12, 13, 15, 17 | rmo4f 2924 | . . . . . . . . . 10 |
19 | 11, 18 | sylib 121 | . . . . . . . . 9 |
20 | 19 | r19.21bi 2554 | . . . . . . . 8 |
21 | 20 | r19.21bi 2554 | . . . . . . 7 |
22 | 1, 2, 21 | syl2ani 406 | . . . . . 6 |
23 | 22 | ralrimiva 2539 | . . . . 5 |
24 | 23 | ralrimiva 2539 | . . . 4 |
25 | nfcsb1v 3078 | . . . . . . 7 | |
26 | 14, 25 | nfxp 4631 | . . . . . 6 |
27 | 26 | nfel2 2321 | . . . . 5 |
28 | csbeq1a 3054 | . . . . . . 7 | |
29 | 16, 28 | xpeq12d 4629 | . . . . . 6 |
30 | 29 | eleq2d 2236 | . . . . 5 |
31 | 12, 13, 27, 30 | rmo4f 2924 | . . . 4 |
32 | 24, 31 | sylibr 133 | . . 3 |
33 | 32 | alrimiv 1862 | . 2 |
34 | df-disj 3960 | . 2 Disj | |
35 | 33, 34 | sylibr 133 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 wral 2444 wrmo 2447 cvv 2726 csb 3045 Disj wdisj 3959 cxp 4602 cfv 5188 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rmo 2452 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 |
This theorem is referenced by: disjsnxp 6205 |
Copyright terms: Public domain | W3C validator |