| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version | ||
| Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjxp1.1 |
|
| Ref | Expression |
|---|---|
| disjxp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 6251 |
. . . . . . 7
| |
| 2 | xp1st 6251 |
. . . . . . 7
| |
| 3 | disjxp1.1 |
. . . . . . . . . . . 12
| |
| 4 | df-disj 4022 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | sylib 122 |
. . . . . . . . . . 11
|
| 6 | 1stexg 6253 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | elv 2776 |
. . . . . . . . . . . 12
|
| 8 | eleq1 2268 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | rmobidv 2695 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | spcv 2867 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 13 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 14 | nfcsb1v 3126 |
. . . . . . . . . . . 12
| |
| 15 | 14 | nfel2 2361 |
. . . . . . . . . . 11
|
| 16 | csbeq1a 3102 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eleq2d 2275 |
. . . . . . . . . . 11
|
| 18 | 12, 13, 15, 17 | rmo4f 2971 |
. . . . . . . . . 10
|
| 19 | 11, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | 19 | r19.21bi 2594 |
. . . . . . . 8
|
| 21 | 20 | r19.21bi 2594 |
. . . . . . 7
|
| 22 | 1, 2, 21 | syl2ani 408 |
. . . . . 6
|
| 23 | 22 | ralrimiva 2579 |
. . . . 5
|
| 24 | 23 | ralrimiva 2579 |
. . . 4
|
| 25 | nfcsb1v 3126 |
. . . . . . 7
| |
| 26 | 14, 25 | nfxp 4702 |
. . . . . 6
|
| 27 | 26 | nfel2 2361 |
. . . . 5
|
| 28 | csbeq1a 3102 |
. . . . . . 7
| |
| 29 | 16, 28 | xpeq12d 4700 |
. . . . . 6
|
| 30 | 29 | eleq2d 2275 |
. . . . 5
|
| 31 | 12, 13, 27, 30 | rmo4f 2971 |
. . . 4
|
| 32 | 24, 31 | sylibr 134 |
. . 3
|
| 33 | 32 | alrimiv 1897 |
. 2
|
| 34 | df-disj 4022 |
. 2
| |
| 35 | 33, 34 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rmo 2492 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-disj 4022 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-1st 6226 |
| This theorem is referenced by: disjsnxp 6323 |
| Copyright terms: Public domain | W3C validator |