Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjxp1 | Unicode version |
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjxp1.1 | Disj |
Ref | Expression |
---|---|
disjxp1 | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 6107 | . . . . . . 7 | |
2 | xp1st 6107 | . . . . . . 7 | |
3 | disjxp1.1 | . . . . . . . . . . . 12 Disj | |
4 | df-disj 3943 | . . . . . . . . . . . 12 Disj | |
5 | 3, 4 | sylib 121 | . . . . . . . . . . 11 |
6 | 1stexg 6109 | . . . . . . . . . . . . 13 | |
7 | 6 | elv 2716 | . . . . . . . . . . . 12 |
8 | eleq1 2220 | . . . . . . . . . . . . 13 | |
9 | 8 | rmobidv 2645 | . . . . . . . . . . . 12 |
10 | 7, 9 | spcv 2806 | . . . . . . . . . . 11 |
11 | 5, 10 | syl 14 | . . . . . . . . . 10 |
12 | nfcv 2299 | . . . . . . . . . . 11 | |
13 | nfcv 2299 | . . . . . . . . . . 11 | |
14 | nfcsb1v 3064 | . . . . . . . . . . . 12 | |
15 | 14 | nfel2 2312 | . . . . . . . . . . 11 |
16 | csbeq1a 3040 | . . . . . . . . . . . 12 | |
17 | 16 | eleq2d 2227 | . . . . . . . . . . 11 |
18 | 12, 13, 15, 17 | rmo4f 2910 | . . . . . . . . . 10 |
19 | 11, 18 | sylib 121 | . . . . . . . . 9 |
20 | 19 | r19.21bi 2545 | . . . . . . . 8 |
21 | 20 | r19.21bi 2545 | . . . . . . 7 |
22 | 1, 2, 21 | syl2ani 406 | . . . . . 6 |
23 | 22 | ralrimiva 2530 | . . . . 5 |
24 | 23 | ralrimiva 2530 | . . . 4 |
25 | nfcsb1v 3064 | . . . . . . 7 | |
26 | 14, 25 | nfxp 4610 | . . . . . 6 |
27 | 26 | nfel2 2312 | . . . . 5 |
28 | csbeq1a 3040 | . . . . . . 7 | |
29 | 16, 28 | xpeq12d 4608 | . . . . . 6 |
30 | 29 | eleq2d 2227 | . . . . 5 |
31 | 12, 13, 27, 30 | rmo4f 2910 | . . . 4 |
32 | 24, 31 | sylibr 133 | . . 3 |
33 | 32 | alrimiv 1854 | . 2 |
34 | df-disj 3943 | . 2 Disj | |
35 | 33, 34 | sylibr 133 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1333 wceq 1335 wcel 2128 wral 2435 wrmo 2438 cvv 2712 csb 3031 Disj wdisj 3942 cxp 4581 cfv 5167 c1st 6080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rmo 2443 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-disj 3943 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fo 5173 df-fv 5175 df-1st 6082 |
This theorem is referenced by: disjsnxp 6178 |
Copyright terms: Public domain | W3C validator |