ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxp1 Unicode version

Theorem disjxp1 6380
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjxp1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem disjxp1
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6309 . . . . . . 7  |-  ( y  e.  ( B  X.  C )  ->  ( 1st `  y )  e.  B )
2 xp1st 6309 . . . . . . 7  |-  ( y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )  ->  ( 1st `  y )  e. 
[_ w  /  x ]_ B )
3 disjxp1.1 . . . . . . . . . . . 12  |-  ( ph  -> Disj  x  e.  A  B
)
4 df-disj 4059 . . . . . . . . . . . 12  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
53, 4sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. z E* x  e.  A  z  e.  B )
6 1stexg 6311 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
76elv 2803 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
8 eleq1 2292 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  y
)  ->  ( z  e.  B  <->  ( 1st `  y
)  e.  B ) )
98rmobidv 2721 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  y
)  ->  ( E* x  e.  A  z  e.  B  <->  E* x  e.  A  ( 1st `  y )  e.  B ) )
107, 9spcv 2897 . . . . . . . . . . 11  |-  ( A. z E* x  e.  A  z  e.  B  ->  E* x  e.  A  ( 1st `  y )  e.  B )
115, 10syl 14 . . . . . . . . . 10  |-  ( ph  ->  E* x  e.  A  ( 1st `  y )  e.  B )
12 nfcv 2372 . . . . . . . . . . 11  |-  F/_ x A
13 nfcv 2372 . . . . . . . . . . 11  |-  F/_ w A
14 nfcsb1v 3157 . . . . . . . . . . . 12  |-  F/_ x [_ w  /  x ]_ B
1514nfel2 2385 . . . . . . . . . . 11  |-  F/ x
( 1st `  y
)  e.  [_ w  /  x ]_ B
16 csbeq1a 3133 . . . . . . . . . . . 12  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
1716eleq2d 2299 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( 1st `  y
)  e.  B  <->  ( 1st `  y )  e.  [_ w  /  x ]_ B
) )
1812, 13, 15, 17rmo4f 3001 . . . . . . . . . 10  |-  ( E* x  e.  A  ( 1st `  y )  e.  B  <->  A. x  e.  A  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
1911, 18sylib 122 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( ( 1st `  y )  e.  B  /\  ( 1st `  y
)  e.  [_ w  /  x ]_ B )  ->  x  =  w ) )
2019r19.21bi 2618 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
2120r19.21bi 2618 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( 1st `  y
)  e.  B  /\  ( 1st `  y )  e.  [_ w  /  x ]_ B )  ->  x  =  w )
)
221, 2, 21syl2ani 408 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  w  e.  A )  ->  (
( y  e.  ( B  X.  C )  /\  y  e.  (
[_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
2322ralrimiva 2603 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
2423ralrimiva 2603 . . . 4  |-  ( ph  ->  A. x  e.  A  A. w  e.  A  ( ( y  e.  ( B  X.  C
)  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w ) )
25 nfcsb1v 3157 . . . . . . 7  |-  F/_ x [_ w  /  x ]_ C
2614, 25nfxp 4745 . . . . . 6  |-  F/_ x
( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
2726nfel2 2385 . . . . 5  |-  F/ x  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C )
28 csbeq1a 3133 . . . . . . 7  |-  ( x  =  w  ->  C  =  [_ w  /  x ]_ C )
2916, 28xpeq12d 4743 . . . . . 6  |-  ( x  =  w  ->  ( B  X.  C )  =  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C
) )
3029eleq2d 2299 . . . . 5  |-  ( x  =  w  ->  (
y  e.  ( B  X.  C )  <->  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) ) )
3112, 13, 27, 30rmo4f 3001 . . . 4  |-  ( E* x  e.  A  y  e.  ( B  X.  C )  <->  A. x  e.  A  A. w  e.  A  ( (
y  e.  ( B  X.  C )  /\  y  e.  ( [_ w  /  x ]_ B  X.  [_ w  /  x ]_ C ) )  ->  x  =  w )
)
3224, 31sylibr 134 . . 3  |-  ( ph  ->  E* x  e.  A  y  e.  ( B  X.  C ) )
3332alrimiv 1920 . 2  |-  ( ph  ->  A. y E* x  e.  A  y  e.  ( B  X.  C
) )
34 df-disj 4059 . 2  |-  (Disj  x  e.  A  ( B  X.  C )  <->  A. y E* x  e.  A  y  e.  ( B  X.  C ) )
3533, 34sylibr 134 1  |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   E*wrmo 2511   _Vcvv 2799   [_csb 3124  Disj wdisj 4058    X. cxp 4716   ` cfv 5317   1stc1st 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rmo 2516  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284
This theorem is referenced by:  disjsnxp  6381
  Copyright terms: Public domain W3C validator