ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss2 Unicode version

Theorem disjss2 3998
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )

Proof of Theorem disjss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3164 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2553 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rmoim 2953 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B
) )
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B ) )
54alimdv 1890 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( A. y E* x  e.  A  y  e.  C  ->  A. y E* x  e.  A  y  e.  B
) )
6 df-disj 3996 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x  e.  A  y  e.  C )
7 df-disj 3996 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
85, 6, 73imtr4g 205 1  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    e. wcel 2160   A.wral 2468   E*wrmo 2471    C_ wss 3144  Disj wdisj 3995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-ral 2473  df-rmo 2476  df-in 3150  df-ss 3157  df-disj 3996
This theorem is referenced by:  disjeq2  3999  0disj  4015
  Copyright terms: Public domain W3C validator