ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss2 Unicode version

Theorem disjss2 3969
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )

Proof of Theorem disjss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2533 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rmoim 2931 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B
) )
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B ) )
54alimdv 1872 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( A. y E* x  e.  A  y  e.  C  ->  A. y E* x  e.  A  y  e.  B
) )
6 df-disj 3967 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x  e.  A  y  e.  C )
7 df-disj 3967 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
85, 6, 73imtr4g 204 1  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    e. wcel 2141   A.wral 2448   E*wrmo 2451    C_ wss 3121  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-rmo 2456  df-in 3127  df-ss 3134  df-disj 3967
This theorem is referenced by:  disjeq2  3970  0disj  3986
  Copyright terms: Public domain W3C validator