ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss2 Unicode version

Theorem disjss2 4038
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )

Proof of Theorem disjss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3195 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2571 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rmoim 2981 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B
) )
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E* x  e.  A  y  e.  C  ->  E* x  e.  A  y  e.  B ) )
54alimdv 1903 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( A. y E* x  e.  A  y  e.  C  ->  A. y E* x  e.  A  y  e.  B
) )
6 df-disj 4036 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x  e.  A  y  e.  C )
7 df-disj 4036 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
85, 6, 73imtr4g 205 1  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2178   A.wral 2486   E*wrmo 2489    C_ wss 3174  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-rmo 2494  df-in 3180  df-ss 3187  df-disj 4036
This theorem is referenced by:  disjeq2  4039  0disj  4056
  Copyright terms: Public domain W3C validator