ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frind Unicode version

Definition df-frind 4380
Description: Define the well-founded relation predicate. In the presence of excluded middle, there are a variety of equivalent ways to define this. In our case, this definition, in terms of an inductive principle, works better than one along the lines of "there is an element which is minimal when A is ordered by R". Because  s is constrained to be a set (not a proper class) here, sometimes it may be necessary to use FrFor directly rather than via  Fr. (Contributed by Jim Kingdon and Mario Carneiro, 21-Sep-2021.)
Assertion
Ref Expression
df-frind  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
Distinct variable groups:    R, s    A, s

Detailed syntax breakdown of Definition df-frind
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wfr 4376 . 2  wff  R  Fr  A
4 vs . . . . 5  setvar  s
54cv 1372 . . . 4  class  s
61, 2, 5wfrfor 4375 . . 3  wff FrFor  R A s
76, 4wal 1371 . 2  wff  A. sFrFor  R A s
83, 7wb 105 1  wff  ( R  Fr  A  <->  A. sFrFor  R A s )
Colors of variables: wff set class
This definition is referenced by:  freq1  4392  freq2  4394  nffr  4397  frirrg  4398  fr0  4399  frind  4400  zfregfr  4623
  Copyright terms: Public domain W3C validator