ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frind Unicode version

Definition df-frind 4379
Description: Define the well-founded relation predicate. In the presence of excluded middle, there are a variety of equivalent ways to define this. In our case, this definition, in terms of an inductive principle, works better than one along the lines of "there is an element which is minimal when A is ordered by R". Because  s is constrained to be a set (not a proper class) here, sometimes it may be necessary to use FrFor directly rather than via  Fr. (Contributed by Jim Kingdon and Mario Carneiro, 21-Sep-2021.)
Assertion
Ref Expression
df-frind  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
Distinct variable groups:    R, s    A, s

Detailed syntax breakdown of Definition df-frind
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wfr 4375 . 2  wff  R  Fr  A
4 vs . . . . 5  setvar  s
54cv 1372 . . . 4  class  s
61, 2, 5wfrfor 4374 . . 3  wff FrFor  R A s
76, 4wal 1371 . 2  wff  A. sFrFor  R A s
83, 7wb 105 1  wff  ( R  Fr  A  <->  A. sFrFor  R A s )
Colors of variables: wff set class
This definition is referenced by:  freq1  4391  freq2  4393  nffr  4396  frirrg  4397  fr0  4398  frind  4399  zfregfr  4622
  Copyright terms: Public domain W3C validator