ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr Unicode version

Theorem nffr 4327
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nffr  |-  F/ x  R  Fr  A

Proof of Theorem nffr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-frind 4310 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
4 nfcv 2308 . . . 4  |-  F/_ x
s
52, 3, 4nffrfor 4326 . . 3  |-  F/ xFrFor  R A s
65nfal 1564 . 2  |-  F/ x A. sFrFor  R A s
71, 6nfxfr 1462 1  |-  F/ x  R  Fr  A
Colors of variables: wff set class
Syntax hints:   A.wal 1341   F/wnf 1448   F/_wnfc 2295  FrFor wfrfor 4305    Fr wfr 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-frfor 4309  df-frind 4310
This theorem is referenced by:  nfwe  4333
  Copyright terms: Public domain W3C validator