ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr Unicode version

Theorem nffr 4414
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nffr  |-  F/ x  R  Fr  A

Proof of Theorem nffr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-frind 4397 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
4 nfcv 2350 . . . 4  |-  F/_ x
s
52, 3, 4nffrfor 4413 . . 3  |-  F/ xFrFor  R A s
65nfal 1600 . 2  |-  F/ x A. sFrFor  R A s
71, 6nfxfr 1498 1  |-  F/ x  R  Fr  A
Colors of variables: wff set class
Syntax hints:   A.wal 1371   F/wnf 1484   F/_wnfc 2337  FrFor wfrfor 4392    Fr wfr 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-frfor 4396  df-frind 4397
This theorem is referenced by:  nfwe  4420
  Copyright terms: Public domain W3C validator