Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffr | Unicode version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | |
nffr.a |
Ref | Expression |
---|---|
nffr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4326 | . 2 FrFor | |
2 | nffr.r | . . . 4 | |
3 | nffr.a | . . . 4 | |
4 | nfcv 2317 | . . . 4 | |
5 | 2, 3, 4 | nffrfor 4342 | . . 3 FrFor |
6 | 5 | nfal 1574 | . 2 FrFor |
7 | 1, 6 | nfxfr 1472 | 1 |
Colors of variables: wff set class |
Syntax hints: wal 1351 wnf 1458 wnfc 2304 FrFor wfrfor 4321 wfr 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-frfor 4325 df-frind 4326 |
This theorem is referenced by: nfwe 4349 |
Copyright terms: Public domain | W3C validator |