ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr Unicode version

Theorem nffr 4187
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nffr  |-  F/ x  R  Fr  A

Proof of Theorem nffr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-frind 4170 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
4 nfcv 2229 . . . 4  |-  F/_ x
s
52, 3, 4nffrfor 4186 . . 3  |-  F/ xFrFor  R A s
65nfal 1514 . 2  |-  F/ x A. sFrFor  R A s
71, 6nfxfr 1409 1  |-  F/ x  R  Fr  A
Colors of variables: wff set class
Syntax hints:   A.wal 1288   F/wnf 1395   F/_wnfc 2216  FrFor wfrfor 4165    Fr wfr 4166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-frfor 4169  df-frind 4170
This theorem is referenced by:  nfwe  4193
  Copyright terms: Public domain W3C validator