ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr Unicode version

Theorem nffr 4343
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nffr  |-  F/ x  R  Fr  A

Proof of Theorem nffr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-frind 4326 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
4 nfcv 2317 . . . 4  |-  F/_ x
s
52, 3, 4nffrfor 4342 . . 3  |-  F/ xFrFor  R A s
65nfal 1574 . 2  |-  F/ x A. sFrFor  R A s
71, 6nfxfr 1472 1  |-  F/ x  R  Fr  A
Colors of variables: wff set class
Syntax hints:   A.wal 1351   F/wnf 1458   F/_wnfc 2304  FrFor wfrfor 4321    Fr wfr 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-frfor 4325  df-frind 4326
This theorem is referenced by:  nfwe  4349
  Copyright terms: Public domain W3C validator