ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr Unicode version

Theorem nffr 4440
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nffr  |-  F/ x  R  Fr  A

Proof of Theorem nffr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-frind 4423 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
4 nfcv 2372 . . . 4  |-  F/_ x
s
52, 3, 4nffrfor 4439 . . 3  |-  F/ xFrFor  R A s
65nfal 1622 . 2  |-  F/ x A. sFrFor  R A s
71, 6nfxfr 1520 1  |-  F/ x  R  Fr  A
Colors of variables: wff set class
Syntax hints:   A.wal 1393   F/wnf 1506   F/_wnfc 2359  FrFor wfrfor 4418    Fr wfr 4419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-frfor 4422  df-frind 4423
This theorem is referenced by:  nfwe  4446
  Copyright terms: Public domain W3C validator