| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frind | Unicode version | ||
| Description: Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.) |
| Ref | Expression |
|---|---|
| frind.sb |
|
| frind.ind |
|
| frind.fr |
|
| frind.a |
|
| Ref | Expression |
|---|---|
| frind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frind.ind |
. . . . . . . 8
| |
| 2 | 1 | ralrimiva 2581 |
. . . . . . 7
|
| 3 | nfv 1552 |
. . . . . . . 8
| |
| 4 | nfv 1552 |
. . . . . . . . 9
| |
| 5 | nfs1v 1968 |
. . . . . . . . 9
| |
| 6 | 4, 5 | nfim 1596 |
. . . . . . . 8
|
| 7 | breq2 4063 |
. . . . . . . . . . 11
| |
| 8 | 7 | imbi1d 231 |
. . . . . . . . . 10
|
| 9 | 8 | ralbidv 2508 |
. . . . . . . . 9
|
| 10 | sbequ12 1795 |
. . . . . . . . 9
| |
| 11 | 9, 10 | imbi12d 234 |
. . . . . . . 8
|
| 12 | 3, 6, 11 | cbvral 2738 |
. . . . . . 7
|
| 13 | 2, 12 | sylib 122 |
. . . . . 6
|
| 14 | frind.sb |
. . . . . . . . . . . 12
| |
| 15 | 14 | elrab3 2937 |
. . . . . . . . . . 11
|
| 16 | 15 | imbi2d 230 |
. . . . . . . . . 10
|
| 17 | 16 | ralbiia 2522 |
. . . . . . . . 9
|
| 18 | 17 | a1i 9 |
. . . . . . . 8
|
| 19 | nfcv 2350 |
. . . . . . . . . 10
| |
| 20 | nfcv 2350 |
. . . . . . . . . 10
| |
| 21 | 19, 20, 5, 10 | elrabf 2934 |
. . . . . . . . 9
|
| 22 | 21 | baib 921 |
. . . . . . . 8
|
| 23 | 18, 22 | imbi12d 234 |
. . . . . . 7
|
| 24 | 23 | ralbiia 2522 |
. . . . . 6
|
| 25 | 13, 24 | sylibr 134 |
. . . . 5
|
| 26 | frind.fr |
. . . . . . . 8
| |
| 27 | df-frind 4397 |
. . . . . . . 8
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . 7
|
| 29 | frind.a |
. . . . . . . 8
| |
| 30 | rabexg 4203 |
. . . . . . . 8
| |
| 31 | frforeq3 4412 |
. . . . . . . . 9
| |
| 32 | 31 | spcgv 2867 |
. . . . . . . 8
|
| 33 | 29, 30, 32 | 3syl 17 |
. . . . . . 7
|
| 34 | 28, 33 | mpd 13 |
. . . . . 6
|
| 35 | df-frfor 4396 |
. . . . . 6
| |
| 36 | 34, 35 | sylib 122 |
. . . . 5
|
| 37 | 25, 36 | mpd 13 |
. . . 4
|
| 38 | ssrab 3279 |
. . . 4
| |
| 39 | 37, 38 | sylib 122 |
. . 3
|
| 40 | 39 | simprd 114 |
. 2
|
| 41 | 40 | r19.21bi 2596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-frfor 4396 df-frind 4397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |