Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frind | Unicode version |
Description: Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.) |
Ref | Expression |
---|---|
frind.sb | |
frind.ind | |
frind.fr | |
frind.a |
Ref | Expression |
---|---|
frind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frind.ind | . . . . . . . 8 | |
2 | 1 | ralrimiva 2539 | . . . . . . 7 |
3 | nfv 1516 | . . . . . . . 8 | |
4 | nfv 1516 | . . . . . . . . 9 | |
5 | nfs1v 1927 | . . . . . . . . 9 | |
6 | 4, 5 | nfim 1560 | . . . . . . . 8 |
7 | breq2 3986 | . . . . . . . . . . 11 | |
8 | 7 | imbi1d 230 | . . . . . . . . . 10 |
9 | 8 | ralbidv 2466 | . . . . . . . . 9 |
10 | sbequ12 1759 | . . . . . . . . 9 | |
11 | 9, 10 | imbi12d 233 | . . . . . . . 8 |
12 | 3, 6, 11 | cbvral 2688 | . . . . . . 7 |
13 | 2, 12 | sylib 121 | . . . . . 6 |
14 | frind.sb | . . . . . . . . . . . 12 | |
15 | 14 | elrab3 2883 | . . . . . . . . . . 11 |
16 | 15 | imbi2d 229 | . . . . . . . . . 10 |
17 | 16 | ralbiia 2480 | . . . . . . . . 9 |
18 | 17 | a1i 9 | . . . . . . . 8 |
19 | nfcv 2308 | . . . . . . . . . 10 | |
20 | nfcv 2308 | . . . . . . . . . 10 | |
21 | 19, 20, 5, 10 | elrabf 2880 | . . . . . . . . 9 |
22 | 21 | baib 909 | . . . . . . . 8 |
23 | 18, 22 | imbi12d 233 | . . . . . . 7 |
24 | 23 | ralbiia 2480 | . . . . . 6 |
25 | 13, 24 | sylibr 133 | . . . . 5 |
26 | frind.fr | . . . . . . . 8 | |
27 | df-frind 4310 | . . . . . . . 8 FrFor | |
28 | 26, 27 | sylib 121 | . . . . . . 7 FrFor |
29 | frind.a | . . . . . . . 8 | |
30 | rabexg 4125 | . . . . . . . 8 | |
31 | frforeq3 4325 | . . . . . . . . 9 FrFor FrFor | |
32 | 31 | spcgv 2813 | . . . . . . . 8 FrFor FrFor |
33 | 29, 30, 32 | 3syl 17 | . . . . . . 7 FrFor FrFor |
34 | 28, 33 | mpd 13 | . . . . . 6 FrFor |
35 | df-frfor 4309 | . . . . . 6 FrFor | |
36 | 34, 35 | sylib 121 | . . . . 5 |
37 | 25, 36 | mpd 13 | . . . 4 |
38 | ssrab 3220 | . . . 4 | |
39 | 37, 38 | sylib 121 | . . 3 |
40 | 39 | simprd 113 | . 2 |
41 | 40 | r19.21bi 2554 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wsb 1750 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 class class class wbr 3982 FrFor wfrfor 4305 wfr 4306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-frfor 4309 df-frind 4310 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |