| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfregfr | Unicode version | ||
| Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfregfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4423 |
. 2
| |
| 2 | bi2.04 248 |
. . . . . . 7
| |
| 3 | 2 | albii 1516 |
. . . . . 6
|
| 4 | df-ral 2513 |
. . . . . 6
| |
| 5 | 3, 4 | bitr4i 187 |
. . . . 5
|
| 6 | sbim 2004 |
. . . . . . . . . . 11
| |
| 7 | clelsb1 2334 |
. . . . . . . . . . . 12
| |
| 8 | clelsb1 2334 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | imbi12i 239 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | bitri 184 |
. . . . . . . . . 10
|
| 11 | 10 | ralbii 2536 |
. . . . . . . . 9
|
| 12 | ralcom3 2699 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | epel 4383 |
. . . . . . . . . 10
| |
| 15 | 14 | imbi1i 238 |
. . . . . . . . 9
|
| 16 | 15 | ralbii 2536 |
. . . . . . . 8
|
| 17 | 13, 16 | bitr4i 187 |
. . . . . . 7
|
| 18 | 17 | imbi1i 238 |
. . . . . 6
|
| 19 | 18 | ralbii 2536 |
. . . . 5
|
| 20 | 5, 19 | bitri 184 |
. . . 4
|
| 21 | ax-setind 4629 |
. . . . 5
| |
| 22 | ssalel 3212 |
. . . . 5
| |
| 23 | 21, 22 | sylibr 134 |
. . . 4
|
| 24 | 20, 23 | sylbir 135 |
. . 3
|
| 25 | df-frfor 4422 |
. . 3
| |
| 26 | 24, 25 | mpbir 146 |
. 2
|
| 27 | 1, 26 | mpgbir 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-eprel 4380 df-frfor 4422 df-frind 4423 |
| This theorem is referenced by: ordfr 4667 wessep 4670 reg3exmidlemwe 4671 |
| Copyright terms: Public domain | W3C validator |