| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfregfr | Unicode version | ||
| Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfregfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4367 |
. 2
| |
| 2 | bi2.04 248 |
. . . . . . 7
| |
| 3 | 2 | albii 1484 |
. . . . . 6
|
| 4 | df-ral 2480 |
. . . . . 6
| |
| 5 | 3, 4 | bitr4i 187 |
. . . . 5
|
| 6 | sbim 1972 |
. . . . . . . . . . 11
| |
| 7 | clelsb1 2301 |
. . . . . . . . . . . 12
| |
| 8 | clelsb1 2301 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | imbi12i 239 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | bitri 184 |
. . . . . . . . . 10
|
| 11 | 10 | ralbii 2503 |
. . . . . . . . 9
|
| 12 | ralcom3 2665 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | epel 4327 |
. . . . . . . . . 10
| |
| 15 | 14 | imbi1i 238 |
. . . . . . . . 9
|
| 16 | 15 | ralbii 2503 |
. . . . . . . 8
|
| 17 | 13, 16 | bitr4i 187 |
. . . . . . 7
|
| 18 | 17 | imbi1i 238 |
. . . . . 6
|
| 19 | 18 | ralbii 2503 |
. . . . 5
|
| 20 | 5, 19 | bitri 184 |
. . . 4
|
| 21 | ax-setind 4573 |
. . . . 5
| |
| 22 | dfss2 3172 |
. . . . 5
| |
| 23 | 21, 22 | sylibr 134 |
. . . 4
|
| 24 | 20, 23 | sylbir 135 |
. . 3
|
| 25 | df-frfor 4366 |
. . 3
| |
| 26 | 24, 25 | mpbir 146 |
. 2
|
| 27 | 1, 26 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-eprel 4324 df-frfor 4366 df-frind 4367 |
| This theorem is referenced by: ordfr 4611 wessep 4614 reg3exmidlemwe 4615 |
| Copyright terms: Public domain | W3C validator |