Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfregfr | Unicode version |
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4317 | . 2 FrFor | |
2 | bi2.04 247 | . . . . . . 7 | |
3 | 2 | albii 1463 | . . . . . 6 |
4 | df-ral 2453 | . . . . . 6 | |
5 | 3, 4 | bitr4i 186 | . . . . 5 |
6 | sbim 1946 | . . . . . . . . . . 11 | |
7 | clelsb1 2275 | . . . . . . . . . . . 12 | |
8 | clelsb1 2275 | . . . . . . . . . . . 12 | |
9 | 7, 8 | imbi12i 238 | . . . . . . . . . . 11 |
10 | 6, 9 | bitri 183 | . . . . . . . . . 10 |
11 | 10 | ralbii 2476 | . . . . . . . . 9 |
12 | ralcom3 2637 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | epel 4277 | . . . . . . . . . 10 | |
15 | 14 | imbi1i 237 | . . . . . . . . 9 |
16 | 15 | ralbii 2476 | . . . . . . . 8 |
17 | 13, 16 | bitr4i 186 | . . . . . . 7 |
18 | 17 | imbi1i 237 | . . . . . 6 |
19 | 18 | ralbii 2476 | . . . . 5 |
20 | 5, 19 | bitri 183 | . . . 4 |
21 | ax-setind 4521 | . . . . 5 | |
22 | dfss2 3136 | . . . . 5 | |
23 | 21, 22 | sylibr 133 | . . . 4 |
24 | 20, 23 | sylbir 134 | . . 3 |
25 | df-frfor 4316 | . . 3 FrFor | |
26 | 24, 25 | mpbir 145 | . 2 FrFor |
27 | 1, 26 | mpgbir 1446 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wsb 1755 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 cep 4272 FrFor wfrfor 4312 wfr 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-eprel 4274 df-frfor 4316 df-frind 4317 |
This theorem is referenced by: ordfr 4559 wessep 4562 reg3exmidlemwe 4563 |
Copyright terms: Public domain | W3C validator |