Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfregfr | Unicode version |
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4291 | . 2 FrFor | |
2 | bi2.04 247 | . . . . . . 7 | |
3 | 2 | albii 1450 | . . . . . 6 |
4 | df-ral 2440 | . . . . . 6 | |
5 | 3, 4 | bitr4i 186 | . . . . 5 |
6 | sbim 1933 | . . . . . . . . . . 11 | |
7 | clelsb3 2262 | . . . . . . . . . . . 12 | |
8 | clelsb3 2262 | . . . . . . . . . . . 12 | |
9 | 7, 8 | imbi12i 238 | . . . . . . . . . . 11 |
10 | 6, 9 | bitri 183 | . . . . . . . . . 10 |
11 | 10 | ralbii 2463 | . . . . . . . . 9 |
12 | ralcom3 2624 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | epel 4251 | . . . . . . . . . 10 | |
15 | 14 | imbi1i 237 | . . . . . . . . 9 |
16 | 15 | ralbii 2463 | . . . . . . . 8 |
17 | 13, 16 | bitr4i 186 | . . . . . . 7 |
18 | 17 | imbi1i 237 | . . . . . 6 |
19 | 18 | ralbii 2463 | . . . . 5 |
20 | 5, 19 | bitri 183 | . . . 4 |
21 | ax-setind 4494 | . . . . 5 | |
22 | dfss2 3117 | . . . . 5 | |
23 | 21, 22 | sylibr 133 | . . . 4 |
24 | 20, 23 | sylbir 134 | . . 3 |
25 | df-frfor 4290 | . . 3 FrFor | |
26 | 24, 25 | mpbir 145 | . 2 FrFor |
27 | 1, 26 | mpgbir 1433 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wsb 1742 wcel 2128 wral 2435 wss 3102 class class class wbr 3965 cep 4246 FrFor wfrfor 4286 wfr 4287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-eprel 4248 df-frfor 4290 df-frind 4291 |
This theorem is referenced by: ordfr 4532 wessep 4535 reg3exmidlemwe 4536 |
Copyright terms: Public domain | W3C validator |