Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfregfr | Unicode version |
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4310 | . 2 FrFor | |
2 | bi2.04 247 | . . . . . . 7 | |
3 | 2 | albii 1458 | . . . . . 6 |
4 | df-ral 2449 | . . . . . 6 | |
5 | 3, 4 | bitr4i 186 | . . . . 5 |
6 | sbim 1941 | . . . . . . . . . . 11 | |
7 | clelsb1 2271 | . . . . . . . . . . . 12 | |
8 | clelsb1 2271 | . . . . . . . . . . . 12 | |
9 | 7, 8 | imbi12i 238 | . . . . . . . . . . 11 |
10 | 6, 9 | bitri 183 | . . . . . . . . . 10 |
11 | 10 | ralbii 2472 | . . . . . . . . 9 |
12 | ralcom3 2633 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | epel 4270 | . . . . . . . . . 10 | |
15 | 14 | imbi1i 237 | . . . . . . . . 9 |
16 | 15 | ralbii 2472 | . . . . . . . 8 |
17 | 13, 16 | bitr4i 186 | . . . . . . 7 |
18 | 17 | imbi1i 237 | . . . . . 6 |
19 | 18 | ralbii 2472 | . . . . 5 |
20 | 5, 19 | bitri 183 | . . . 4 |
21 | ax-setind 4514 | . . . . 5 | |
22 | dfss2 3131 | . . . . 5 | |
23 | 21, 22 | sylibr 133 | . . . 4 |
24 | 20, 23 | sylbir 134 | . . 3 |
25 | df-frfor 4309 | . . 3 FrFor | |
26 | 24, 25 | mpbir 145 | . 2 FrFor |
27 | 1, 26 | mpgbir 1441 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wsb 1750 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 cep 4265 FrFor wfrfor 4305 wfr 4306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-eprel 4267 df-frfor 4309 df-frind 4310 |
This theorem is referenced by: ordfr 4552 wessep 4555 reg3exmidlemwe 4556 |
Copyright terms: Public domain | W3C validator |