ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr Unicode version

Theorem zfregfr 4531
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr  |-  _E  Fr  A

Proof of Theorem zfregfr
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4291 . 2  |-  (  _E  Fr  A  <->  A. sFrFor  _E  A s )
2 bi2.04 247 . . . . . . 7  |-  ( ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  ( x  e.  A  ->  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
32albii 1450 . . . . . 6  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x ( x  e.  A  ->  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
4 df-ral 2440 . . . . . 6  |-  ( A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  A. x
( x  e.  A  ->  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) ) )
53, 4bitr4i 186 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s ) )
6 sbim 1933 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  ->  x  e.  s )  <-> 
( [ y  /  x ] x  e.  A  ->  [ y  /  x ] x  e.  s
) )
7 clelsb3 2262 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
8 clelsb3 2262 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  s  <->  y  e.  s )
97, 8imbi12i 238 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  ->  [ y  /  x ] x  e.  s
)  <->  ( y  e.  A  ->  y  e.  s ) )
106, 9bitri 183 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  ->  x  e.  s )  <-> 
( y  e.  A  ->  y  e.  s ) )
1110ralbii 2463 . . . . . . . . 9  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  x  ( y  e.  A  ->  y  e.  s ) )
12 ralcom3 2624 . . . . . . . . 9  |-  ( A. y  e.  x  (
y  e.  A  -> 
y  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
1311, 12bitri 183 . . . . . . . 8  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
14 epel 4251 . . . . . . . . . 10  |-  ( y  _E  x  <->  y  e.  x )
1514imbi1i 237 . . . . . . . . 9  |-  ( ( y  _E  x  -> 
y  e.  s )  <-> 
( y  e.  x  ->  y  e.  s ) )
1615ralbii 2463 . . . . . . . 8  |-  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  <->  A. y  e.  A  ( y  e.  x  ->  y  e.  s ) )
1713, 16bitr4i 186 . . . . . . 7  |-  ( A. y  e.  x  [
y  /  x ]
( x  e.  A  ->  x  e.  s )  <->  A. y  e.  A  ( y  _E  x  ->  y  e.  s ) )
1817imbi1i 237 . . . . . 6  |-  ( ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  ->  x  e.  s ) )
1918ralbii 2463 . . . . 5  |-  ( A. x  e.  A  ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  x  e.  s )  <->  A. x  e.  A  ( A. y  e.  A  (
y  _E  x  -> 
y  e.  s )  ->  x  e.  s ) )
205, 19bitri 183 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  <->  A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s ) )
21 ax-setind 4494 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  ->  A. x
( x  e.  A  ->  x  e.  s ) )
22 dfss2 3117 . . . . 5  |-  ( A 
C_  s  <->  A. x
( x  e.  A  ->  x  e.  s ) )
2321, 22sylibr 133 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ( x  e.  A  ->  x  e.  s )  ->  (
x  e.  A  ->  x  e.  s )
)  ->  A  C_  s
)
2420, 23sylbir 134 . . 3  |-  ( A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s )  ->  A  C_  s
)
25 df-frfor 4290 . . 3  |-  (FrFor  _E  A s  <->  ( A. x  e.  A  ( A. y  e.  A  ( y  _E  x  ->  y  e.  s )  ->  x  e.  s )  ->  A  C_  s
) )
2624, 25mpbir 145 . 2  |- FrFor  _E  A
s
271, 26mpgbir 1433 1  |-  _E  Fr  A
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1333   [wsb 1742    e. wcel 2128   A.wral 2435    C_ wss 3102   class class class wbr 3965    _E cep 4246  FrFor wfrfor 4286    Fr wfr 4287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-eprel 4248  df-frfor 4290  df-frind 4291
This theorem is referenced by:  ordfr  4532  wessep  4535  reg3exmidlemwe  4536
  Copyright terms: Public domain W3C validator