Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-frfor | Unicode version |
Description: Define the well-founded relation predicate where might be a proper class. By passing in we allow it potentially to be a proper class rather than a set. (Contributed by Jim Kingdon and Mario Carneiro, 22-Sep-2021.) |
Ref | Expression |
---|---|
df-frfor | FrFor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cR | . . 3 | |
3 | cS | . . 3 | |
4 | 1, 2, 3 | wfrfor 4287 | . 2 FrFor |
5 | vy | . . . . . . . . 9 | |
6 | 5 | cv 1334 | . . . . . . . 8 |
7 | vx | . . . . . . . . 9 | |
8 | 7 | cv 1334 | . . . . . . . 8 |
9 | 6, 8, 2 | wbr 3965 | . . . . . . 7 |
10 | 6, 3 | wcel 2128 | . . . . . . 7 |
11 | 9, 10 | wi 4 | . . . . . 6 |
12 | 11, 5, 1 | wral 2435 | . . . . 5 |
13 | 8, 3 | wcel 2128 | . . . . 5 |
14 | 12, 13 | wi 4 | . . . 4 |
15 | 14, 7, 1 | wral 2435 | . . 3 |
16 | 1, 3 | wss 3102 | . . 3 |
17 | 15, 16 | wi 4 | . 2 |
18 | 4, 17 | wb 104 | 1 FrFor |
Colors of variables: wff set class |
This definition is referenced by: frforeq1 4303 frforeq2 4305 frforeq3 4307 nffrfor 4308 frirrg 4310 fr0 4311 frind 4312 zfregfr 4533 |
Copyright terms: Public domain | W3C validator |