ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq2 Unicode version

Theorem freq2 4377
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2  |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )

Proof of Theorem freq2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 frforeq2 4376 . . 3  |-  ( A  =  B  ->  (FrFor  R A s  <-> FrFor  R B s ) )
21albidv 1835 . 2  |-  ( A  =  B  ->  ( A. sFrFor  R A s  <->  A. sFrFor  R B s ) )
3 df-frind 4363 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
4 df-frind 4363 . 2  |-  ( R  Fr  B  <->  A. sFrFor  R B s )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364  FrFor wfrfor 4358    Fr wfr 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-in 3159  df-ss 3166  df-frfor 4362  df-frind 4363
This theorem is referenced by:  weeq2  4388
  Copyright terms: Public domain W3C validator