ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq2 Unicode version

Theorem freq2 4305
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2  |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )

Proof of Theorem freq2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 frforeq2 4304 . . 3  |-  ( A  =  B  ->  (FrFor  R A s  <-> FrFor  R B s ) )
21albidv 1804 . 2  |-  ( A  =  B  ->  ( A. sFrFor  R A s  <->  A. sFrFor  R B s ) )
3 df-frind 4291 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
4 df-frind 4291 . 2  |-  ( R  Fr  B  <->  A. sFrFor  R B s )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333    = wceq 1335  FrFor wfrfor 4286    Fr wfr 4287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-in 3108  df-ss 3115  df-frfor 4290  df-frind 4291
This theorem is referenced by:  weeq2  4316
  Copyright terms: Public domain W3C validator