| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version | ||
| Description: A well-founded relation
is irreflexive. This is the case where |
| Ref | Expression |
|---|---|
| frirrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | simpl3 1004 |
. . . 4
| |
| 3 | 1, 2 | sseldd 3185 |
. . 3
|
| 4 | neldifsnd 3754 |
. . 3
| |
| 5 | 3, 4 | pm2.65da 662 |
. 2
|
| 6 | simplr 528 |
. . . . . 6
| |
| 7 | simplr 528 |
. . . . . . . . . . 11
| |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . . 10
|
| 9 | simpr 110 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | breqtrrd 4062 |
. . . . . . . . 9
|
| 11 | breq1 4037 |
. . . . . . . . . . 11
| |
| 12 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . . . . . . 10
|
| 14 | simplr 528 |
. . . . . . . . . 10
| |
| 15 | simpll3 1040 |
. . . . . . . . . . 11
| |
| 16 | 15 | ad2antrr 488 |
. . . . . . . . . 10
|
| 17 | 13, 14, 16 | rspcdva 2873 |
. . . . . . . . 9
|
| 18 | 10, 17 | mpd 13 |
. . . . . . . 8
|
| 19 | neldifsnd 3754 |
. . . . . . . 8
| |
| 20 | 18, 19 | pm2.65da 662 |
. . . . . . 7
|
| 21 | velsn 3640 |
. . . . . . 7
| |
| 22 | 20, 21 | sylnibr 678 |
. . . . . 6
|
| 23 | 6, 22 | eldifd 3167 |
. . . . 5
|
| 24 | 23 | ex 115 |
. . . 4
|
| 25 | 24 | ralrimiva 2570 |
. . 3
|
| 26 | df-frind 4368 |
. . . . . . . 8
| |
| 27 | df-frfor 4367 |
. . . . . . . . 9
| |
| 28 | 27 | albii 1484 |
. . . . . . . 8
|
| 29 | 26, 28 | bitri 184 |
. . . . . . 7
|
| 30 | 29 | biimpi 120 |
. . . . . 6
|
| 31 | 30 | 3ad2ant1 1020 |
. . . . 5
|
| 32 | difexg 4175 |
. . . . . . 7
| |
| 33 | eleq2 2260 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 35 | 34 | ralbidv 2497 |
. . . . . . . . . . 11
|
| 36 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | imbi12d 234 |
. . . . . . . . . 10
|
| 38 | 37 | ralbidv 2497 |
. . . . . . . . 9
|
| 39 | sseq2 3208 |
. . . . . . . . 9
| |
| 40 | 38, 39 | imbi12d 234 |
. . . . . . . 8
|
| 41 | 40 | spcgv 2851 |
. . . . . . 7
|
| 42 | 32, 41 | syl 14 |
. . . . . 6
|
| 43 | 42 | 3ad2ant2 1021 |
. . . . 5
|
| 44 | 31, 43 | mpd 13 |
. . . 4
|
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 25, 45 | mpd 13 |
. 2
|
| 47 | 5, 46 | mtand 666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-frfor 4367 df-frind 4368 |
| This theorem is referenced by: efrirr 4389 wepo 4395 wetriext 4614 |
| Copyright terms: Public domain | W3C validator |