| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version | ||
| Description: A well-founded relation
is irreflexive.  This is the case where  | 
| Ref | Expression | 
|---|---|
| frirrg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . 4
 | |
| 2 | simpl3 1004 | 
. . . 4
 | |
| 3 | 1, 2 | sseldd 3184 | 
. . 3
 | 
| 4 | neldifsnd 3753 | 
. . 3
 | |
| 5 | 3, 4 | pm2.65da 662 | 
. 2
 | 
| 6 | simplr 528 | 
. . . . . 6
 | |
| 7 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 9 | simpr 110 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | breqtrrd 4061 | 
. . . . . . . . 9
 | 
| 11 | breq1 4036 | 
. . . . . . . . . . 11
 | |
| 12 | eleq1 2259 | 
. . . . . . . . . . 11
 | |
| 13 | 11, 12 | imbi12d 234 | 
. . . . . . . . . 10
 | 
| 14 | simplr 528 | 
. . . . . . . . . 10
 | |
| 15 | simpll3 1040 | 
. . . . . . . . . . 11
 | |
| 16 | 15 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 17 | 13, 14, 16 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 18 | 10, 17 | mpd 13 | 
. . . . . . . 8
 | 
| 19 | neldifsnd 3753 | 
. . . . . . . 8
 | |
| 20 | 18, 19 | pm2.65da 662 | 
. . . . . . 7
 | 
| 21 | velsn 3639 | 
. . . . . . 7
 | |
| 22 | 20, 21 | sylnibr 678 | 
. . . . . 6
 | 
| 23 | 6, 22 | eldifd 3167 | 
. . . . 5
 | 
| 24 | 23 | ex 115 | 
. . . 4
 | 
| 25 | 24 | ralrimiva 2570 | 
. . 3
 | 
| 26 | df-frind 4367 | 
. . . . . . . 8
 | |
| 27 | df-frfor 4366 | 
. . . . . . . . 9
 | |
| 28 | 27 | albii 1484 | 
. . . . . . . 8
 | 
| 29 | 26, 28 | bitri 184 | 
. . . . . . 7
 | 
| 30 | 29 | biimpi 120 | 
. . . . . 6
 | 
| 31 | 30 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 32 | difexg 4174 | 
. . . . . . 7
 | |
| 33 | eleq2 2260 | 
. . . . . . . . . . . . 13
 | |
| 34 | 33 | imbi2d 230 | 
. . . . . . . . . . . 12
 | 
| 35 | 34 | ralbidv 2497 | 
. . . . . . . . . . 11
 | 
| 36 | eleq2 2260 | 
. . . . . . . . . . 11
 | |
| 37 | 35, 36 | imbi12d 234 | 
. . . . . . . . . 10
 | 
| 38 | 37 | ralbidv 2497 | 
. . . . . . . . 9
 | 
| 39 | sseq2 3207 | 
. . . . . . . . 9
 | |
| 40 | 38, 39 | imbi12d 234 | 
. . . . . . . 8
 | 
| 41 | 40 | spcgv 2851 | 
. . . . . . 7
 | 
| 42 | 32, 41 | syl 14 | 
. . . . . 6
 | 
| 43 | 42 | 3ad2ant2 1021 | 
. . . . 5
 | 
| 44 | 31, 43 | mpd 13 | 
. . . 4
 | 
| 45 | 44 | adantr 276 | 
. . 3
 | 
| 46 | 25, 45 | mpd 13 | 
. 2
 | 
| 47 | 5, 46 | mtand 666 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-frfor 4366 df-frind 4367 | 
| This theorem is referenced by: efrirr 4388 wepo 4394 wetriext 4613 | 
| Copyright terms: Public domain | W3C validator |