Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version |
Description: A well-founded relation is irreflexive. This is the case where exists. (Contributed by Jim Kingdon, 21-Sep-2021.) |
Ref | Expression |
---|---|
frirrg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | simpl3 997 | . . . 4 | |
3 | 1, 2 | sseldd 3148 | . . 3 |
4 | neldifsnd 3714 | . . 3 | |
5 | 3, 4 | pm2.65da 656 | . 2 |
6 | simplr 525 | . . . . . 6 | |
7 | simplr 525 | . . . . . . . . . . 11 | |
8 | 7 | ad2antrr 485 | . . . . . . . . . 10 |
9 | simpr 109 | . . . . . . . . . 10 | |
10 | 8, 9 | breqtrrd 4017 | . . . . . . . . 9 |
11 | breq1 3992 | . . . . . . . . . . 11 | |
12 | eleq1 2233 | . . . . . . . . . . 11 | |
13 | 11, 12 | imbi12d 233 | . . . . . . . . . 10 |
14 | simplr 525 | . . . . . . . . . 10 | |
15 | simpll3 1033 | . . . . . . . . . . 11 | |
16 | 15 | ad2antrr 485 | . . . . . . . . . 10 |
17 | 13, 14, 16 | rspcdva 2839 | . . . . . . . . 9 |
18 | 10, 17 | mpd 13 | . . . . . . . 8 |
19 | neldifsnd 3714 | . . . . . . . 8 | |
20 | 18, 19 | pm2.65da 656 | . . . . . . 7 |
21 | velsn 3600 | . . . . . . 7 | |
22 | 20, 21 | sylnibr 672 | . . . . . 6 |
23 | 6, 22 | eldifd 3131 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 24 | ralrimiva 2543 | . . 3 |
26 | df-frind 4317 | . . . . . . . 8 FrFor | |
27 | df-frfor 4316 | . . . . . . . . 9 FrFor | |
28 | 27 | albii 1463 | . . . . . . . 8 FrFor |
29 | 26, 28 | bitri 183 | . . . . . . 7 |
30 | 29 | biimpi 119 | . . . . . 6 |
31 | 30 | 3ad2ant1 1013 | . . . . 5 |
32 | difexg 4130 | . . . . . . 7 | |
33 | eleq2 2234 | . . . . . . . . . . . . 13 | |
34 | 33 | imbi2d 229 | . . . . . . . . . . . 12 |
35 | 34 | ralbidv 2470 | . . . . . . . . . . 11 |
36 | eleq2 2234 | . . . . . . . . . . 11 | |
37 | 35, 36 | imbi12d 233 | . . . . . . . . . 10 |
38 | 37 | ralbidv 2470 | . . . . . . . . 9 |
39 | sseq2 3171 | . . . . . . . . 9 | |
40 | 38, 39 | imbi12d 233 | . . . . . . . 8 |
41 | 40 | spcgv 2817 | . . . . . . 7 |
42 | 32, 41 | syl 14 | . . . . . 6 |
43 | 42 | 3ad2ant2 1014 | . . . . 5 |
44 | 31, 43 | mpd 13 | . . . 4 |
45 | 44 | adantr 274 | . . 3 |
46 | 25, 45 | mpd 13 | . 2 |
47 | 5, 46 | mtand 660 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wal 1346 wceq 1348 wcel 2141 wral 2448 cvv 2730 cdif 3118 wss 3121 csn 3583 class class class wbr 3989 FrFor wfrfor 4312 wfr 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-frfor 4316 df-frind 4317 |
This theorem is referenced by: efrirr 4338 wepo 4344 wetriext 4561 |
Copyright terms: Public domain | W3C validator |