Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version |
Description: A well-founded relation is irreflexive. This is the case where exists. (Contributed by Jim Kingdon, 21-Sep-2021.) |
Ref | Expression |
---|---|
frirrg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | simpl3 992 | . . . 4 | |
3 | 1, 2 | sseldd 3143 | . . 3 |
4 | neldifsnd 3707 | . . 3 | |
5 | 3, 4 | pm2.65da 651 | . 2 |
6 | simplr 520 | . . . . . 6 | |
7 | simplr 520 | . . . . . . . . . . 11 | |
8 | 7 | ad2antrr 480 | . . . . . . . . . 10 |
9 | simpr 109 | . . . . . . . . . 10 | |
10 | 8, 9 | breqtrrd 4010 | . . . . . . . . 9 |
11 | breq1 3985 | . . . . . . . . . . 11 | |
12 | eleq1 2229 | . . . . . . . . . . 11 | |
13 | 11, 12 | imbi12d 233 | . . . . . . . . . 10 |
14 | simplr 520 | . . . . . . . . . 10 | |
15 | simpll3 1028 | . . . . . . . . . . 11 | |
16 | 15 | ad2antrr 480 | . . . . . . . . . 10 |
17 | 13, 14, 16 | rspcdva 2835 | . . . . . . . . 9 |
18 | 10, 17 | mpd 13 | . . . . . . . 8 |
19 | neldifsnd 3707 | . . . . . . . 8 | |
20 | 18, 19 | pm2.65da 651 | . . . . . . 7 |
21 | velsn 3593 | . . . . . . 7 | |
22 | 20, 21 | sylnibr 667 | . . . . . 6 |
23 | 6, 22 | eldifd 3126 | . . . . 5 |
24 | 23 | ex 114 | . . . 4 |
25 | 24 | ralrimiva 2539 | . . 3 |
26 | df-frind 4310 | . . . . . . . 8 FrFor | |
27 | df-frfor 4309 | . . . . . . . . 9 FrFor | |
28 | 27 | albii 1458 | . . . . . . . 8 FrFor |
29 | 26, 28 | bitri 183 | . . . . . . 7 |
30 | 29 | biimpi 119 | . . . . . 6 |
31 | 30 | 3ad2ant1 1008 | . . . . 5 |
32 | difexg 4123 | . . . . . . 7 | |
33 | eleq2 2230 | . . . . . . . . . . . . 13 | |
34 | 33 | imbi2d 229 | . . . . . . . . . . . 12 |
35 | 34 | ralbidv 2466 | . . . . . . . . . . 11 |
36 | eleq2 2230 | . . . . . . . . . . 11 | |
37 | 35, 36 | imbi12d 233 | . . . . . . . . . 10 |
38 | 37 | ralbidv 2466 | . . . . . . . . 9 |
39 | sseq2 3166 | . . . . . . . . 9 | |
40 | 38, 39 | imbi12d 233 | . . . . . . . 8 |
41 | 40 | spcgv 2813 | . . . . . . 7 |
42 | 32, 41 | syl 14 | . . . . . 6 |
43 | 42 | 3ad2ant2 1009 | . . . . 5 |
44 | 31, 43 | mpd 13 | . . . 4 |
45 | 44 | adantr 274 | . . 3 |
46 | 25, 45 | mpd 13 | . 2 |
47 | 5, 46 | mtand 655 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wral 2444 cvv 2726 cdif 3113 wss 3116 csn 3576 class class class wbr 3982 FrFor wfrfor 4305 wfr 4306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-frfor 4309 df-frind 4310 |
This theorem is referenced by: efrirr 4331 wepo 4337 wetriext 4554 |
Copyright terms: Public domain | W3C validator |