| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version | ||
| Description: A well-founded relation
is irreflexive. This is the case where |
| Ref | Expression |
|---|---|
| frirrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | simpl3 1005 |
. . . 4
| |
| 3 | 1, 2 | sseldd 3202 |
. . 3
|
| 4 | neldifsnd 3775 |
. . 3
| |
| 5 | 3, 4 | pm2.65da 663 |
. 2
|
| 6 | simplr 528 |
. . . . . 6
| |
| 7 | simplr 528 |
. . . . . . . . . . 11
| |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . . 10
|
| 9 | simpr 110 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | breqtrrd 4087 |
. . . . . . . . 9
|
| 11 | breq1 4062 |
. . . . . . . . . . 11
| |
| 12 | eleq1 2270 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . . . . . . 10
|
| 14 | simplr 528 |
. . . . . . . . . 10
| |
| 15 | simpll3 1041 |
. . . . . . . . . . 11
| |
| 16 | 15 | ad2antrr 488 |
. . . . . . . . . 10
|
| 17 | 13, 14, 16 | rspcdva 2889 |
. . . . . . . . 9
|
| 18 | 10, 17 | mpd 13 |
. . . . . . . 8
|
| 19 | neldifsnd 3775 |
. . . . . . . 8
| |
| 20 | 18, 19 | pm2.65da 663 |
. . . . . . 7
|
| 21 | velsn 3660 |
. . . . . . 7
| |
| 22 | 20, 21 | sylnibr 679 |
. . . . . 6
|
| 23 | 6, 22 | eldifd 3184 |
. . . . 5
|
| 24 | 23 | ex 115 |
. . . 4
|
| 25 | 24 | ralrimiva 2581 |
. . 3
|
| 26 | df-frind 4397 |
. . . . . . . 8
| |
| 27 | df-frfor 4396 |
. . . . . . . . 9
| |
| 28 | 27 | albii 1494 |
. . . . . . . 8
|
| 29 | 26, 28 | bitri 184 |
. . . . . . 7
|
| 30 | 29 | biimpi 120 |
. . . . . 6
|
| 31 | 30 | 3ad2ant1 1021 |
. . . . 5
|
| 32 | difexg 4201 |
. . . . . . 7
| |
| 33 | eleq2 2271 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | imbi2d 230 |
. . . . . . . . . . . 12
|
| 35 | 34 | ralbidv 2508 |
. . . . . . . . . . 11
|
| 36 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | imbi12d 234 |
. . . . . . . . . 10
|
| 38 | 37 | ralbidv 2508 |
. . . . . . . . 9
|
| 39 | sseq2 3225 |
. . . . . . . . 9
| |
| 40 | 38, 39 | imbi12d 234 |
. . . . . . . 8
|
| 41 | 40 | spcgv 2867 |
. . . . . . 7
|
| 42 | 32, 41 | syl 14 |
. . . . . 6
|
| 43 | 42 | 3ad2ant2 1022 |
. . . . 5
|
| 44 | 31, 43 | mpd 13 |
. . . 4
|
| 45 | 44 | adantr 276 |
. . 3
|
| 46 | 25, 45 | mpd 13 |
. 2
|
| 47 | 5, 46 | mtand 667 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-frfor 4396 df-frind 4397 |
| This theorem is referenced by: efrirr 4418 wepo 4424 wetriext 4643 |
| Copyright terms: Public domain | W3C validator |