ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq1 Unicode version

Theorem freq1 4391
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1  |-  ( R  =  S  ->  ( R  Fr  A  <->  S  Fr  A ) )

Proof of Theorem freq1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 frforeq1 4390 . . 3  |-  ( R  =  S  ->  (FrFor  R A s  <-> FrFor  S A s ) )
21albidv 1847 . 2  |-  ( R  =  S  ->  ( A. sFrFor  R A s  <->  A. sFrFor  S A s ) )
3 df-frind 4379 . 2  |-  ( R  Fr  A  <->  A. sFrFor  R A s )
4 df-frind 4379 . 2  |-  ( S  Fr  A  <->  A. sFrFor  S A s )
52, 3, 43bitr4g 223 1  |-  ( R  =  S  ->  ( R  Fr  A  <->  S  Fr  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373  FrFor wfrfor 4374    Fr wfr 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-clel 2201  df-ral 2489  df-br 4045  df-frfor 4378  df-frind 4379
This theorem is referenced by:  weeq1  4403
  Copyright terms: Public domain W3C validator