ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 Unicode version

Theorem fr0 4386
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0  |-  R  Fr  (/)

Proof of Theorem fr0
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4367 . 2  |-  ( R  Fr  (/)  <->  A. sFrFor  R (/) s )
2 0ss 3489 . . . 4  |-  (/)  C_  s
32a1i 9 . . 3  |-  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
)
4 df-frfor 4366 . . 3  |-  (FrFor  R (/) s  <->  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
) )
53, 4mpbir 146 . 2  |- FrFor  R (/) s
61, 5mpgbir 1467 1  |-  R  Fr  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2475    C_ wss 3157   (/)c0 3450   class class class wbr 4033  FrFor wfrfor 4362    Fr wfr 4363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-frfor 4366  df-frind 4367
This theorem is referenced by:  we0  4396
  Copyright terms: Public domain W3C validator