ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 Unicode version

Theorem fr0 4399
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0  |-  R  Fr  (/)

Proof of Theorem fr0
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4380 . 2  |-  ( R  Fr  (/)  <->  A. sFrFor  R (/) s )
2 0ss 3499 . . . 4  |-  (/)  C_  s
32a1i 9 . . 3  |-  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
)
4 df-frfor 4379 . . 3  |-  (FrFor  R (/) s  <->  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
) )
53, 4mpbir 146 . 2  |- FrFor  R (/) s
61, 5mpgbir 1476 1  |-  R  Fr  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2484    C_ wss 3166   (/)c0 3460   class class class wbr 4045  FrFor wfrfor 4375    Fr wfr 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-frfor 4379  df-frind 4380
This theorem is referenced by:  we0  4409
  Copyright terms: Public domain W3C validator