ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 Unicode version

Theorem fr0 4416
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0  |-  R  Fr  (/)

Proof of Theorem fr0
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4397 . 2  |-  ( R  Fr  (/)  <->  A. sFrFor  R (/) s )
2 0ss 3507 . . . 4  |-  (/)  C_  s
32a1i 9 . . 3  |-  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
)
4 df-frfor 4396 . . 3  |-  (FrFor  R (/) s  <->  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
) )
53, 4mpbir 146 . 2  |- FrFor  R (/) s
61, 5mpgbir 1477 1  |-  R  Fr  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2486    C_ wss 3174   (/)c0 3468   class class class wbr 4059  FrFor wfrfor 4392    Fr wfr 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-frfor 4396  df-frind 4397
This theorem is referenced by:  we0  4426
  Copyright terms: Public domain W3C validator