ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 Unicode version

Theorem fr0 4352
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0  |-  R  Fr  (/)

Proof of Theorem fr0
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4333 . 2  |-  ( R  Fr  (/)  <->  A. sFrFor  R (/) s )
2 0ss 3462 . . . 4  |-  (/)  C_  s
32a1i 9 . . 3  |-  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
)
4 df-frfor 4332 . . 3  |-  (FrFor  R (/) s  <->  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
) )
53, 4mpbir 146 . 2  |- FrFor  R (/) s
61, 5mpgbir 1453 1  |-  R  Fr  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2455    C_ wss 3130   (/)c0 3423   class class class wbr 4004  FrFor wfrfor 4328    Fr wfr 4329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424  df-frfor 4332  df-frind 4333
This theorem is referenced by:  we0  4362
  Copyright terms: Public domain W3C validator