ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-un Unicode version

Definition df-un 3125
Description: Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference  ( A  \  B ) (df-dif 3123) and intersection  ( A  i^i  B ) (df-in 3127). (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
df-un  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
Distinct variable groups:    x, A    x, B

Detailed syntax breakdown of Definition df-un
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cun 3119 . 2  class  ( A  u.  B )
4 vx . . . . . 6  setvar  x
54cv 1347 . . . . 5  class  x
65, 1wcel 2141 . . . 4  wff  x  e.  A
75, 2wcel 2141 . . . 4  wff  x  e.  B
86, 7wo 703 . . 3  wff  ( x  e.  A  \/  x  e.  B )
98, 4cab 2156 . 2  class  { x  |  ( x  e.  A  \/  x  e.  B ) }
103, 9wceq 1348 1  wff  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
Colors of variables: wff set class
This definition is referenced by:  elun  3268  nfun  3283  unipr  3808  iinuniss  3953  bdcun  13819
  Copyright terms: Public domain W3C validator