| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | Unicode version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. . 3
| |
| 3 | elex 2811 |
. . 3
| |
| 4 | 2, 3 | jaoi 721 |
. 2
|
| 5 | eleq1 2292 |
. . . 4
| |
| 6 | eleq1 2292 |
. . . 4
| |
| 7 | 5, 6 | orbi12d 798 |
. . 3
|
| 8 | df-un 3201 |
. . 3
| |
| 9 | 7, 8 | elab2g 2950 |
. 2
|
| 10 | 1, 4, 9 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: uneqri 3346 uncom 3348 uneq1 3351 unass 3361 ssun1 3367 unss1 3373 ssequn1 3374 unss 3378 rexun 3384 ralunb 3385 unssdif 3439 unssin 3443 inssun 3444 indi 3451 undi 3452 difundi 3456 difindiss 3458 undif3ss 3465 symdifxor 3470 rabun2 3483 reuun2 3487 undif4 3554 ssundifim 3575 dcun 3601 dfpr2 3685 eltpg 3711 pwprss 3883 pwtpss 3884 uniun 3906 intun 3953 iunun 4043 iunxun 4044 iinuniss 4047 brun 4134 undifexmid 4276 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 pwunss 4373 elsuci 4493 elsucg 4494 elsuc2g 4495 ordsucim 4591 sucprcreg 4640 opthprc 4769 xpundi 4774 xpundir 4775 funun 5361 mptun 5454 unpreima 5759 reldmtpos 6397 dftpos4 6407 tpostpos 6408 onunsnss 7075 unfidisj 7080 undifdcss 7081 fidcenumlemrks 7116 djulclb 7218 eldju 7231 eldju2ndl 7235 eldju2ndr 7236 ctssdccl 7274 pw1nel3 7412 sucpw1nel3 7414 elnn0 9367 un0addcl 9398 un0mulcl 9399 elxnn0 9430 ltxr 9967 elxr 9968 fzsplit2 10242 elfzp1 10264 uzsplit 10284 elfzp12 10291 fz01or 10303 fzosplit 10371 fzouzsplit 10373 elfzonlteqm1 10411 fzosplitsni 10436 hashinfuni 10994 hashennnuni 10996 hashunlem 11021 zfz1isolemiso 11056 ccatrn 11139 cats1un 11248 summodclem3 11886 fsumsplit 11913 fsumsplitsn 11916 sumsplitdc 11938 fprodsplitdc 12102 fprodsplit 12103 fprodunsn 12110 fprodsplitsn 12139 nnnn0modprm0 12773 prm23lt5 12781 reopnap 15214 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 plycj 15429 lgsdir2 15706 2lgslem3 15774 2lgsoddprmlem3 15784 djulclALT 16123 djurclALT 16124 bj-charfun 16128 bj-nntrans 16272 bj-nnelirr 16274 |
| Copyright terms: Public domain | W3C validator |