Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun | Unicode version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2736 | . 2 | |
2 | elex 2736 | . . 3 | |
3 | elex 2736 | . . 3 | |
4 | 2, 3 | jaoi 706 | . 2 |
5 | eleq1 2228 | . . . 4 | |
6 | eleq1 2228 | . . . 4 | |
7 | 5, 6 | orbi12d 783 | . . 3 |
8 | df-un 3119 | . . 3 | |
9 | 7, 8 | elab2g 2872 | . 2 |
10 | 1, 4, 9 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 wceq 1343 wcel 2136 cvv 2725 cun 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 |
This theorem is referenced by: uneqri 3263 uncom 3265 uneq1 3268 unass 3278 ssun1 3284 unss1 3290 ssequn1 3291 unss 3295 rexun 3301 ralunb 3302 unssdif 3356 unssin 3360 inssun 3361 indi 3368 undi 3369 difundi 3373 difindiss 3375 undif3ss 3382 symdifxor 3387 rabun2 3400 reuun2 3404 undif4 3470 ssundifim 3491 dcun 3518 dfpr2 3594 eltpg 3620 pwprss 3784 pwtpss 3785 uniun 3807 intun 3854 iunun 3943 iunxun 3944 iinuniss 3947 brun 4032 undifexmid 4171 exmidundif 4184 exmidundifim 4185 pwunss 4260 elsuci 4380 elsucg 4381 elsuc2g 4382 ordsucim 4476 sucprcreg 4525 opthprc 4654 xpundi 4659 xpundir 4660 funun 5231 mptun 5318 unpreima 5609 reldmtpos 6217 dftpos4 6227 tpostpos 6228 onunsnss 6878 unfidisj 6883 undifdcss 6884 fidcenumlemrks 6914 djulclb 7016 eldju 7029 eldju2ndl 7033 eldju2ndr 7034 ctssdccl 7072 pw1nel3 7183 sucpw1nel3 7185 elnn0 9112 un0addcl 9143 un0mulcl 9144 elxnn0 9175 ltxr 9707 elxr 9708 fzsplit2 9981 elfzp1 10003 uzsplit 10023 elfzp12 10030 fz01or 10042 fzosplit 10108 fzouzsplit 10110 elfzonlteqm1 10141 fzosplitsni 10166 hashinfuni 10686 hashennnuni 10688 hashunlem 10713 zfz1isolemiso 10748 summodclem3 11317 fsumsplit 11344 fsumsplitsn 11347 sumsplitdc 11369 fprodsplitdc 11533 fprodsplit 11534 fprodunsn 11541 fprodsplitsn 11570 nnnn0modprm0 12183 prm23lt5 12191 reopnap 13138 lgsdir2 13534 djulclALT 13642 djurclALT 13643 bj-charfun 13649 bj-nntrans 13793 bj-nnelirr 13795 exmid1stab 13840 |
Copyright terms: Public domain | W3C validator |