| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | Unicode version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | elex 2783 |
. . 3
| |
| 3 | elex 2783 |
. . 3
| |
| 4 | 2, 3 | jaoi 718 |
. 2
|
| 5 | eleq1 2268 |
. . . 4
| |
| 6 | eleq1 2268 |
. . . 4
| |
| 7 | 5, 6 | orbi12d 795 |
. . 3
|
| 8 | df-un 3170 |
. . 3
| |
| 9 | 7, 8 | elab2g 2920 |
. 2
|
| 10 | 1, 4, 9 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: uneqri 3315 uncom 3317 uneq1 3320 unass 3330 ssun1 3336 unss1 3342 ssequn1 3343 unss 3347 rexun 3353 ralunb 3354 unssdif 3408 unssin 3412 inssun 3413 indi 3420 undi 3421 difundi 3425 difindiss 3427 undif3ss 3434 symdifxor 3439 rabun2 3452 reuun2 3456 undif4 3523 ssundifim 3544 dcun 3570 dfpr2 3652 eltpg 3678 pwprss 3846 pwtpss 3847 uniun 3869 intun 3916 iunun 4006 iunxun 4007 iinuniss 4010 brun 4095 undifexmid 4237 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 pwunss 4330 elsuci 4450 elsucg 4451 elsuc2g 4452 ordsucim 4548 sucprcreg 4597 opthprc 4726 xpundi 4731 xpundir 4732 funun 5315 mptun 5407 unpreima 5705 reldmtpos 6339 dftpos4 6349 tpostpos 6350 onunsnss 7014 unfidisj 7019 undifdcss 7020 fidcenumlemrks 7055 djulclb 7157 eldju 7170 eldju2ndl 7174 eldju2ndr 7175 ctssdccl 7213 pw1nel3 7343 sucpw1nel3 7345 elnn0 9297 un0addcl 9328 un0mulcl 9329 elxnn0 9360 ltxr 9897 elxr 9898 fzsplit2 10172 elfzp1 10194 uzsplit 10214 elfzp12 10221 fz01or 10233 fzosplit 10301 fzouzsplit 10303 elfzonlteqm1 10339 fzosplitsni 10364 hashinfuni 10922 hashennnuni 10924 hashunlem 10949 zfz1isolemiso 10984 ccatrn 11065 summodclem3 11691 fsumsplit 11718 fsumsplitsn 11721 sumsplitdc 11743 fprodsplitdc 11907 fprodsplit 11908 fprodunsn 11915 fprodsplitsn 11944 nnnn0modprm0 12578 prm23lt5 12586 reopnap 15018 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 plycj 15233 lgsdir2 15510 2lgslem3 15578 2lgsoddprmlem3 15588 djulclALT 15737 djurclALT 15738 bj-charfun 15743 bj-nntrans 15887 bj-nnelirr 15889 |
| Copyright terms: Public domain | W3C validator |