Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun | Unicode version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 | |
2 | elex 2746 | . . 3 | |
3 | elex 2746 | . . 3 | |
4 | 2, 3 | jaoi 716 | . 2 |
5 | eleq1 2238 | . . . 4 | |
6 | eleq1 2238 | . . . 4 | |
7 | 5, 6 | orbi12d 793 | . . 3 |
8 | df-un 3131 | . . 3 | |
9 | 7, 8 | elab2g 2882 | . 2 |
10 | 1, 4, 9 | pm5.21nii 704 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wo 708 wceq 1353 wcel 2146 cvv 2735 cun 3125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 |
This theorem is referenced by: uneqri 3275 uncom 3277 uneq1 3280 unass 3290 ssun1 3296 unss1 3302 ssequn1 3303 unss 3307 rexun 3313 ralunb 3314 unssdif 3368 unssin 3372 inssun 3373 indi 3380 undi 3381 difundi 3385 difindiss 3387 undif3ss 3394 symdifxor 3399 rabun2 3412 reuun2 3416 undif4 3483 ssundifim 3504 dcun 3531 dfpr2 3608 eltpg 3634 pwprss 3801 pwtpss 3802 uniun 3824 intun 3871 iunun 3960 iunxun 3961 iinuniss 3964 brun 4049 undifexmid 4188 exmidundif 4201 exmidundifim 4202 pwunss 4277 elsuci 4397 elsucg 4398 elsuc2g 4399 ordsucim 4493 sucprcreg 4542 opthprc 4671 xpundi 4676 xpundir 4677 funun 5252 mptun 5339 unpreima 5633 reldmtpos 6244 dftpos4 6254 tpostpos 6255 onunsnss 6906 unfidisj 6911 undifdcss 6912 fidcenumlemrks 6942 djulclb 7044 eldju 7057 eldju2ndl 7061 eldju2ndr 7062 ctssdccl 7100 pw1nel3 7220 sucpw1nel3 7222 elnn0 9149 un0addcl 9180 un0mulcl 9181 elxnn0 9212 ltxr 9744 elxr 9745 fzsplit2 10018 elfzp1 10040 uzsplit 10060 elfzp12 10067 fz01or 10079 fzosplit 10145 fzouzsplit 10147 elfzonlteqm1 10178 fzosplitsni 10203 hashinfuni 10723 hashennnuni 10725 hashunlem 10750 zfz1isolemiso 10785 summodclem3 11354 fsumsplit 11381 fsumsplitsn 11384 sumsplitdc 11406 fprodsplitdc 11570 fprodsplit 11571 fprodunsn 11578 fprodsplitsn 11607 nnnn0modprm0 12220 prm23lt5 12228 reopnap 13589 lgsdir2 13985 djulclALT 14093 djurclALT 14094 bj-charfun 14099 bj-nntrans 14243 bj-nnelirr 14245 exmid1stab 14290 |
Copyright terms: Public domain | W3C validator |