| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | Unicode version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. 2
| |
| 2 | elex 2782 |
. . 3
| |
| 3 | elex 2782 |
. . 3
| |
| 4 | 2, 3 | jaoi 717 |
. 2
|
| 5 | eleq1 2267 |
. . . 4
| |
| 6 | eleq1 2267 |
. . . 4
| |
| 7 | 5, 6 | orbi12d 794 |
. . 3
|
| 8 | df-un 3169 |
. . 3
| |
| 9 | 7, 8 | elab2g 2919 |
. 2
|
| 10 | 1, 4, 9 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: uneqri 3314 uncom 3316 uneq1 3319 unass 3329 ssun1 3335 unss1 3341 ssequn1 3342 unss 3346 rexun 3352 ralunb 3353 unssdif 3407 unssin 3411 inssun 3412 indi 3419 undi 3420 difundi 3424 difindiss 3426 undif3ss 3433 symdifxor 3438 rabun2 3451 reuun2 3455 undif4 3522 ssundifim 3543 dcun 3569 dfpr2 3651 eltpg 3677 pwprss 3845 pwtpss 3846 uniun 3868 intun 3915 iunun 4005 iunxun 4006 iinuniss 4009 brun 4094 undifexmid 4236 exmidundif 4249 exmidundifim 4250 exmid1stab 4251 pwunss 4329 elsuci 4449 elsucg 4450 elsuc2g 4451 ordsucim 4547 sucprcreg 4596 opthprc 4725 xpundi 4730 xpundir 4731 funun 5314 mptun 5406 unpreima 5704 reldmtpos 6338 dftpos4 6348 tpostpos 6349 onunsnss 7013 unfidisj 7018 undifdcss 7019 fidcenumlemrks 7054 djulclb 7156 eldju 7169 eldju2ndl 7173 eldju2ndr 7174 ctssdccl 7212 pw1nel3 7342 sucpw1nel3 7344 elnn0 9296 un0addcl 9327 un0mulcl 9328 elxnn0 9359 ltxr 9896 elxr 9897 fzsplit2 10171 elfzp1 10193 uzsplit 10213 elfzp12 10220 fz01or 10232 fzosplit 10299 fzouzsplit 10301 elfzonlteqm1 10337 fzosplitsni 10362 hashinfuni 10920 hashennnuni 10922 hashunlem 10947 zfz1isolemiso 10982 ccatrn 11063 summodclem3 11633 fsumsplit 11660 fsumsplitsn 11663 sumsplitdc 11685 fprodsplitdc 11849 fprodsplit 11850 fprodunsn 11857 fprodsplitsn 11886 nnnn0modprm0 12520 prm23lt5 12528 reopnap 14960 plyaddlem1 15161 plymullem1 15162 plycoeid3 15171 plycj 15175 lgsdir2 15452 2lgslem3 15520 2lgsoddprmlem3 15530 djulclALT 15670 djurclALT 15671 bj-charfun 15676 bj-nntrans 15820 bj-nnelirr 15822 |
| Copyright terms: Public domain | W3C validator |