![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun | Unicode version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elex 2771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jaoi 717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | orbi12d 794 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-un 3158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | elab2g 2908 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 4, 9 | pm5.21nii 705 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 |
This theorem is referenced by: uneqri 3302 uncom 3304 uneq1 3307 unass 3317 ssun1 3323 unss1 3329 ssequn1 3330 unss 3334 rexun 3340 ralunb 3341 unssdif 3395 unssin 3399 inssun 3400 indi 3407 undi 3408 difundi 3412 difindiss 3414 undif3ss 3421 symdifxor 3426 rabun2 3439 reuun2 3443 undif4 3510 ssundifim 3531 dcun 3557 dfpr2 3638 eltpg 3664 pwprss 3832 pwtpss 3833 uniun 3855 intun 3902 iunun 3992 iunxun 3993 iinuniss 3996 brun 4081 undifexmid 4223 exmidundif 4236 exmidundifim 4237 exmid1stab 4238 pwunss 4315 elsuci 4435 elsucg 4436 elsuc2g 4437 ordsucim 4533 sucprcreg 4582 opthprc 4711 xpundi 4716 xpundir 4717 funun 5299 mptun 5386 unpreima 5684 reldmtpos 6308 dftpos4 6318 tpostpos 6319 onunsnss 6975 unfidisj 6980 undifdcss 6981 fidcenumlemrks 7014 djulclb 7116 eldju 7129 eldju2ndl 7133 eldju2ndr 7134 ctssdccl 7172 pw1nel3 7293 sucpw1nel3 7295 elnn0 9245 un0addcl 9276 un0mulcl 9277 elxnn0 9308 ltxr 9844 elxr 9845 fzsplit2 10119 elfzp1 10141 uzsplit 10161 elfzp12 10168 fz01or 10180 fzosplit 10247 fzouzsplit 10249 elfzonlteqm1 10280 fzosplitsni 10305 hashinfuni 10851 hashennnuni 10853 hashunlem 10878 zfz1isolemiso 10913 summodclem3 11526 fsumsplit 11553 fsumsplitsn 11556 sumsplitdc 11578 fprodsplitdc 11742 fprodsplit 11743 fprodunsn 11750 fprodsplitsn 11779 nnnn0modprm0 12396 prm23lt5 12404 reopnap 14725 plyaddlem1 14926 plymullem1 14927 plycj 14939 lgsdir2 15190 2lgslem3 15258 2lgsoddprmlem3 15268 djulclALT 15363 djurclALT 15364 bj-charfun 15369 bj-nntrans 15513 bj-nnelirr 15515 |
Copyright terms: Public domain | W3C validator |