| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | Unicode version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 |
. 2
| |
| 2 | elex 2785 |
. . 3
| |
| 3 | elex 2785 |
. . 3
| |
| 4 | 2, 3 | jaoi 718 |
. 2
|
| 5 | eleq1 2269 |
. . . 4
| |
| 6 | eleq1 2269 |
. . . 4
| |
| 7 | 5, 6 | orbi12d 795 |
. . 3
|
| 8 | df-un 3174 |
. . 3
| |
| 9 | 7, 8 | elab2g 2924 |
. 2
|
| 10 | 1, 4, 9 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 |
| This theorem is referenced by: uneqri 3319 uncom 3321 uneq1 3324 unass 3334 ssun1 3340 unss1 3346 ssequn1 3347 unss 3351 rexun 3357 ralunb 3358 unssdif 3412 unssin 3416 inssun 3417 indi 3424 undi 3425 difundi 3429 difindiss 3431 undif3ss 3438 symdifxor 3443 rabun2 3456 reuun2 3460 undif4 3527 ssundifim 3548 dcun 3574 dfpr2 3657 eltpg 3683 pwprss 3855 pwtpss 3856 uniun 3878 intun 3925 iunun 4015 iunxun 4016 iinuniss 4019 brun 4106 undifexmid 4248 exmidundif 4261 exmidundifim 4262 exmid1stab 4263 pwunss 4343 elsuci 4463 elsucg 4464 elsuc2g 4465 ordsucim 4561 sucprcreg 4610 opthprc 4739 xpundi 4744 xpundir 4745 funun 5329 mptun 5422 unpreima 5723 reldmtpos 6357 dftpos4 6367 tpostpos 6368 onunsnss 7035 unfidisj 7040 undifdcss 7041 fidcenumlemrks 7076 djulclb 7178 eldju 7191 eldju2ndl 7195 eldju2ndr 7196 ctssdccl 7234 pw1nel3 7372 sucpw1nel3 7374 elnn0 9327 un0addcl 9358 un0mulcl 9359 elxnn0 9390 ltxr 9927 elxr 9928 fzsplit2 10202 elfzp1 10224 uzsplit 10244 elfzp12 10251 fz01or 10263 fzosplit 10331 fzouzsplit 10333 elfzonlteqm1 10371 fzosplitsni 10396 hashinfuni 10954 hashennnuni 10956 hashunlem 10981 zfz1isolemiso 11016 ccatrn 11098 cats1un 11207 summodclem3 11776 fsumsplit 11803 fsumsplitsn 11806 sumsplitdc 11828 fprodsplitdc 11992 fprodsplit 11993 fprodunsn 12000 fprodsplitsn 12029 nnnn0modprm0 12663 prm23lt5 12671 reopnap 15103 plyaddlem1 15304 plymullem1 15305 plycoeid3 15314 plycj 15318 lgsdir2 15595 2lgslem3 15663 2lgsoddprmlem3 15673 djulclALT 15907 djurclALT 15908 bj-charfun 15912 bj-nntrans 16056 bj-nnelirr 16058 |
| Copyright terms: Public domain | W3C validator |