Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun | Unicode version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | elex 2723 | . . 3 | |
3 | elex 2723 | . . 3 | |
4 | 2, 3 | jaoi 706 | . 2 |
5 | eleq1 2220 | . . . 4 | |
6 | eleq1 2220 | . . . 4 | |
7 | 5, 6 | orbi12d 783 | . . 3 |
8 | df-un 3106 | . . 3 | |
9 | 7, 8 | elab2g 2859 | . 2 |
10 | 1, 4, 9 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 wceq 1335 wcel 2128 cvv 2712 cun 3100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 |
This theorem is referenced by: uneqri 3249 uncom 3251 uneq1 3254 unass 3264 ssun1 3270 unss1 3276 ssequn1 3277 unss 3281 rexun 3287 ralunb 3288 unssdif 3342 unssin 3346 inssun 3347 indi 3354 undi 3355 difundi 3359 difindiss 3361 undif3ss 3368 symdifxor 3373 rabun2 3386 reuun2 3390 undif4 3456 ssundifim 3477 dcun 3504 dfpr2 3579 eltpg 3604 pwprss 3768 pwtpss 3769 uniun 3791 intun 3838 iunun 3927 iunxun 3928 iinuniss 3931 brun 4015 undifexmid 4153 exmidundif 4166 exmidundifim 4167 pwunss 4242 elsuci 4362 elsucg 4363 elsuc2g 4364 ordsucim 4457 sucprcreg 4506 opthprc 4634 xpundi 4639 xpundir 4640 funun 5211 mptun 5298 unpreima 5589 reldmtpos 6194 dftpos4 6204 tpostpos 6205 onunsnss 6854 unfidisj 6859 undifdcss 6860 fidcenumlemrks 6890 djulclb 6989 eldju 7002 eldju2ndl 7006 eldju2ndr 7007 ctssdccl 7045 pw1nel3 7149 sucpw1nel3 7151 elnn0 9075 un0addcl 9106 un0mulcl 9107 elxnn0 9138 ltxr 9664 elxr 9665 fzsplit2 9934 elfzp1 9956 uzsplit 9976 elfzp12 9983 fz01or 9995 fzosplit 10058 fzouzsplit 10060 elfzonlteqm1 10091 fzosplitsni 10116 hashinfuni 10633 hashennnuni 10635 hashunlem 10660 zfz1isolemiso 10692 summodclem3 11259 fsumsplit 11286 fsumsplitsn 11289 sumsplitdc 11311 fprodsplitdc 11475 fprodsplit 11476 fprodunsn 11483 fprodsplitsn 11512 reopnap 12898 djulclALT 13334 djurclALT 13335 bj-charfun 13341 bj-nntrans 13485 bj-nnelirr 13487 exmid1stab 13532 |
Copyright terms: Public domain | W3C validator |