![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun | Unicode version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elex 2771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jaoi 717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | orbi12d 794 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-un 3157 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | elab2g 2907 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 4, 9 | pm5.21nii 705 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 |
This theorem is referenced by: uneqri 3301 uncom 3303 uneq1 3306 unass 3316 ssun1 3322 unss1 3328 ssequn1 3329 unss 3333 rexun 3339 ralunb 3340 unssdif 3394 unssin 3398 inssun 3399 indi 3406 undi 3407 difundi 3411 difindiss 3413 undif3ss 3420 symdifxor 3425 rabun2 3438 reuun2 3442 undif4 3509 ssundifim 3530 dcun 3556 dfpr2 3637 eltpg 3663 pwprss 3831 pwtpss 3832 uniun 3854 intun 3901 iunun 3991 iunxun 3992 iinuniss 3995 brun 4080 undifexmid 4222 exmidundif 4235 exmidundifim 4236 exmid1stab 4237 pwunss 4314 elsuci 4434 elsucg 4435 elsuc2g 4436 ordsucim 4532 sucprcreg 4581 opthprc 4710 xpundi 4715 xpundir 4716 funun 5298 mptun 5385 unpreima 5683 reldmtpos 6306 dftpos4 6316 tpostpos 6317 onunsnss 6973 unfidisj 6978 undifdcss 6979 fidcenumlemrks 7012 djulclb 7114 eldju 7127 eldju2ndl 7131 eldju2ndr 7132 ctssdccl 7170 pw1nel3 7291 sucpw1nel3 7293 elnn0 9242 un0addcl 9273 un0mulcl 9274 elxnn0 9305 ltxr 9841 elxr 9842 fzsplit2 10116 elfzp1 10138 uzsplit 10158 elfzp12 10165 fz01or 10177 fzosplit 10244 fzouzsplit 10246 elfzonlteqm1 10277 fzosplitsni 10302 hashinfuni 10848 hashennnuni 10850 hashunlem 10875 zfz1isolemiso 10910 summodclem3 11523 fsumsplit 11550 fsumsplitsn 11553 sumsplitdc 11575 fprodsplitdc 11739 fprodsplit 11740 fprodunsn 11747 fprodsplitsn 11776 nnnn0modprm0 12393 prm23lt5 12401 reopnap 14706 plyaddlem1 14893 plymullem1 14894 lgsdir2 15149 2lgsoddprmlem3 15199 djulclALT 15293 djurclALT 15294 bj-charfun 15299 bj-nntrans 15443 bj-nnelirr 15445 |
Copyright terms: Public domain | W3C validator |