ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipr Unicode version

Theorem unipr 3823
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
Hypotheses
Ref Expression
unipr.1  |-  A  e. 
_V
unipr.2  |-  B  e. 
_V
Assertion
Ref Expression
unipr  |-  U. { A ,  B }  =  ( A  u.  B )

Proof of Theorem unipr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1628 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
)  <->  ( E. y
( x  e.  y  /\  y  =  A )  \/  E. y
( x  e.  y  /\  y  =  B ) ) )
2 vex 2740 . . . . . . . 8  |-  y  e. 
_V
32elpr 3613 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43anbi2i 457 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( x  e.  y  /\  (
y  =  A  \/  y  =  B )
) )
5 andi 818 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  =  A  \/  y  =  B ) )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
64, 5bitri 184 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  { A ,  B } )  <->  ( (
x  e.  y  /\  y  =  A )  \/  ( x  e.  y  /\  y  =  B ) ) )
76exbii 1605 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
{ A ,  B } )  <->  E. y
( ( x  e.  y  /\  y  =  A )  \/  (
x  e.  y  /\  y  =  B )
) )
8 unipr.1 . . . . . . 7  |-  A  e. 
_V
98clel3 2872 . . . . . 6  |-  ( x  e.  A  <->  E. y
( y  =  A  /\  x  e.  y ) )
10 exancom 1608 . . . . . 6  |-  ( E. y ( y  =  A  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  A ) )
119, 10bitri 184 . . . . 5  |-  ( x  e.  A  <->  E. y
( x  e.  y  /\  y  =  A ) )
12 unipr.2 . . . . . . 7  |-  B  e. 
_V
1312clel3 2872 . . . . . 6  |-  ( x  e.  B  <->  E. y
( y  =  B  /\  x  e.  y ) )
14 exancom 1608 . . . . . 6  |-  ( E. y ( y  =  B  /\  x  e.  y )  <->  E. y
( x  e.  y  /\  y  =  B ) )
1513, 14bitri 184 . . . . 5  |-  ( x  e.  B  <->  E. y
( x  e.  y  /\  y  =  B ) )
1611, 15orbi12i 764 . . . 4  |-  ( ( x  e.  A  \/  x  e.  B )  <->  ( E. y ( x  e.  y  /\  y  =  A )  \/  E. y ( x  e.  y  /\  y  =  B ) ) )
171, 7, 163bitr4ri 213 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) )
1817abbii 2293 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
19 df-un 3133 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
20 df-uni 3810 . 2  |-  U. { A ,  B }  =  { x  |  E. y ( x  e.  y  /\  y  e. 
{ A ,  B } ) }
2118, 19, 203eqtr4ri 2209 1  |-  U. { A ,  B }  =  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   _Vcvv 2737    u. cun 3127   {cpr 3593   U.cuni 3809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-sn 3598  df-pr 3599  df-uni 3810
This theorem is referenced by:  uniprg  3824  unisn  3825  uniop  4255  unex  4441  bj-unex  14641
  Copyright terms: Public domain W3C validator