Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unipr | Unicode version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
unipr.1 | |
unipr.2 |
Ref | Expression |
---|---|
unipr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1616 | . . . 4 | |
2 | vex 2729 | . . . . . . . 8 | |
3 | 2 | elpr 3597 | . . . . . . 7 |
4 | 3 | anbi2i 453 | . . . . . 6 |
5 | andi 808 | . . . . . 6 | |
6 | 4, 5 | bitri 183 | . . . . 5 |
7 | 6 | exbii 1593 | . . . 4 |
8 | unipr.1 | . . . . . . 7 | |
9 | 8 | clel3 2861 | . . . . . 6 |
10 | exancom 1596 | . . . . . 6 | |
11 | 9, 10 | bitri 183 | . . . . 5 |
12 | unipr.2 | . . . . . . 7 | |
13 | 12 | clel3 2861 | . . . . . 6 |
14 | exancom 1596 | . . . . . 6 | |
15 | 13, 14 | bitri 183 | . . . . 5 |
16 | 11, 15 | orbi12i 754 | . . . 4 |
17 | 1, 7, 16 | 3bitr4ri 212 | . . 3 |
18 | 17 | abbii 2282 | . 2 |
19 | df-un 3120 | . 2 | |
20 | df-uni 3790 | . 2 | |
21 | 18, 19, 20 | 3eqtr4ri 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 cun 3114 cpr 3577 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: uniprg 3804 unisn 3805 uniop 4233 unex 4419 bj-unex 13801 |
Copyright terms: Public domain | W3C validator |