Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unipr | Unicode version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
unipr.1 | |
unipr.2 |
Ref | Expression |
---|---|
unipr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1608 | . . . 4 | |
2 | vex 2715 | . . . . . . . 8 | |
3 | 2 | elpr 3581 | . . . . . . 7 |
4 | 3 | anbi2i 453 | . . . . . 6 |
5 | andi 808 | . . . . . 6 | |
6 | 4, 5 | bitri 183 | . . . . 5 |
7 | 6 | exbii 1585 | . . . 4 |
8 | unipr.1 | . . . . . . 7 | |
9 | 8 | clel3 2847 | . . . . . 6 |
10 | exancom 1588 | . . . . . 6 | |
11 | 9, 10 | bitri 183 | . . . . 5 |
12 | unipr.2 | . . . . . . 7 | |
13 | 12 | clel3 2847 | . . . . . 6 |
14 | exancom 1588 | . . . . . 6 | |
15 | 13, 14 | bitri 183 | . . . . 5 |
16 | 11, 15 | orbi12i 754 | . . . 4 |
17 | 1, 7, 16 | 3bitr4ri 212 | . . 3 |
18 | 17 | abbii 2273 | . 2 |
19 | df-un 3106 | . 2 | |
20 | df-uni 3773 | . 2 | |
21 | 18, 19, 20 | 3eqtr4ri 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1335 wex 1472 wcel 2128 cab 2143 cvv 2712 cun 3100 cpr 3561 cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-uni 3773 |
This theorem is referenced by: uniprg 3787 unisn 3788 uniop 4215 unex 4401 bj-unex 13505 |
Copyright terms: Public domain | W3C validator |