| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unipr | Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| unipr.1 | 
 | 
| unipr.2 | 
 | 
| Ref | Expression | 
|---|---|
| unipr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.43 1642 | 
. . . 4
 | |
| 2 | vex 2766 | 
. . . . . . . 8
 | |
| 3 | 2 | elpr 3643 | 
. . . . . . 7
 | 
| 4 | 3 | anbi2i 457 | 
. . . . . 6
 | 
| 5 | andi 819 | 
. . . . . 6
 | |
| 6 | 4, 5 | bitri 184 | 
. . . . 5
 | 
| 7 | 6 | exbii 1619 | 
. . . 4
 | 
| 8 | unipr.1 | 
. . . . . . 7
 | |
| 9 | 8 | clel3 2899 | 
. . . . . 6
 | 
| 10 | exancom 1622 | 
. . . . . 6
 | |
| 11 | 9, 10 | bitri 184 | 
. . . . 5
 | 
| 12 | unipr.2 | 
. . . . . . 7
 | |
| 13 | 12 | clel3 2899 | 
. . . . . 6
 | 
| 14 | exancom 1622 | 
. . . . . 6
 | |
| 15 | 13, 14 | bitri 184 | 
. . . . 5
 | 
| 16 | 11, 15 | orbi12i 765 | 
. . . 4
 | 
| 17 | 1, 7, 16 | 3bitr4ri 213 | 
. . 3
 | 
| 18 | 17 | abbii 2312 | 
. 2
 | 
| 19 | df-un 3161 | 
. 2
 | |
| 20 | df-uni 3840 | 
. 2
 | |
| 21 | 18, 19, 20 | 3eqtr4ri 2228 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: uniprg 3854 unisn 3855 uniop 4288 unex 4476 bj-unex 15565 | 
| Copyright terms: Public domain | W3C validator |