| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unipr | Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| unipr.1 |
|
| unipr.2 |
|
| Ref | Expression |
|---|---|
| unipr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1674 |
. . . 4
| |
| 2 | vex 2802 |
. . . . . . . 8
| |
| 3 | 2 | elpr 3687 |
. . . . . . 7
|
| 4 | 3 | anbi2i 457 |
. . . . . 6
|
| 5 | andi 823 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 184 |
. . . . 5
|
| 7 | 6 | exbii 1651 |
. . . 4
|
| 8 | unipr.1 |
. . . . . . 7
| |
| 9 | 8 | clel3 2938 |
. . . . . 6
|
| 10 | exancom 1654 |
. . . . . 6
| |
| 11 | 9, 10 | bitri 184 |
. . . . 5
|
| 12 | unipr.2 |
. . . . . . 7
| |
| 13 | 12 | clel3 2938 |
. . . . . 6
|
| 14 | exancom 1654 |
. . . . . 6
| |
| 15 | 13, 14 | bitri 184 |
. . . . 5
|
| 16 | 11, 15 | orbi12i 769 |
. . . 4
|
| 17 | 1, 7, 16 | 3bitr4ri 213 |
. . 3
|
| 18 | 17 | abbii 2345 |
. 2
|
| 19 | df-un 3201 |
. 2
| |
| 20 | df-uni 3888 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4ri 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: uniprg 3902 unisn 3903 uniop 4341 unex 4531 bj-unex 16240 |
| Copyright terms: Public domain | W3C validator |