HomeHome Intuitionistic Logic Explorer
Theorem List (p. 33 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3201-3300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssv 3201 Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
 |-  A  C_  _V
 
Theoremsseq1 3202 Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( A  =  B  ->  ( A  C_  C  <->  B 
 C_  C ) )
 
Theoremsseq2 3203 Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.)
 |-  ( A  =  B  ->  ( C  C_  A  <->  C 
 C_  B ) )
 
Theoremsseq12 3204 Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C 
 <->  B  C_  D )
 )
 
Theoremsseq1i 3205 An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  C_  C 
 <->  B  C_  C )
 
Theoremsseq2i 3206 An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  C_  A 
 <->  C  C_  B )
 
Theoremsseq12i 3207 An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  C_  C  <->  B 
 C_  D )
 
Theoremsseq1d 3208 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  C_  C  <->  B  C_  C ) )
 
Theoremsseq2d 3209 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  C_  A  <->  C  C_  B ) )
 
Theoremsseq12d 3210 An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  C_  C  <->  B  C_  D ) )
 
Theoremeqsstri 3211 Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.)
 |-  A  =  B   &    |-  B  C_  C   =>    |-  A  C_  C
 
Theoremeqsstrri 3212 Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
 |-  B  =  A   &    |-  B  C_  C   =>    |-  A  C_  C
 
Theoremsseqtri 3213 Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
 |-  A  C_  B   &    |-  B  =  C   =>    |-  A  C_  C
 
Theoremsseqtrri 3214 Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
 |-  A  C_  B   &    |-  C  =  B   =>    |-  A  C_  C
 
Theoremeqsstrd 3215 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremeqsstrrd 3216 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  B  =  A )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsseqtrd 3217 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsseqtrrd 3218 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theorem3sstr3i 3219 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  C_  B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C  C_  D
 
Theorem3sstr4i 3220 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  C_  B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C  C_  D
 
Theorem3sstr3g 3221 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
 |-  ( ph  ->  A  C_  B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr4g 3222 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  ( ph  ->  A  C_  B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr3d 3223 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr4d 3224 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C  C_  D )
 
Theoremeqsstrid 3225 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  A  =  B   &    |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremeqsstrrid 3226 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsseqtrdi 3227 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  B  =  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsseqtrrdi 3228 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  C  =  B   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsseqtrid 3229 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  B  C_  A   &    |-  ( ph  ->  A  =  C )   =>    |-  ( ph  ->  B 
 C_  C )
 
Theoremsseqtrrid 3230 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  B  C_  A   &    |-  ( ph  ->  C  =  A )   =>    |-  ( ph  ->  B 
 C_  C )
 
Theoremeqsstrdi 3231 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  B  C_  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremeqsstrrdi 3232 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  B  =  A )   &    |-  B  C_  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremeqimss 3233 Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( A  =  B  ->  A  C_  B )
 
Theoremeqimss2 3234 Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
 |-  ( B  =  A  ->  A  C_  B )
 
Theoremeqimssi 3235 Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.)
 |-  A  =  B   =>    |-  A  C_  B
 
Theoremeqimss2i 3236 Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
 |-  A  =  B   =>    |-  B  C_  A
 
Theoremnssne1 3237 Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C )
 
Theoremnssne2 3238 Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  C  /\  -.  B  C_  C )  ->  A  =/=  B )
 
Theoremnssr 3239* Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
 |-  ( E. x ( x  e.  A  /\  -.  x  e.  B ) 
 ->  -.  A  C_  B )
 
Theoremnelss 3240 Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
 |-  ( ( A  e.  B  /\  -.  A  e.  C )  ->  -.  B  C_  C )
 
Theoremssrexf 3241 Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B  ->  ( E. x  e.  A  ph  ->  E. x  e.  B  ph ) )
 
Theoremssrmof 3242 "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B  ->  ( E* x  e.  B  ph  ->  E* x  e.  A  ph ) )
 
Theoremssralv 3243* Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
 |-  ( A  C_  B  ->  ( A. x  e.  B  ph  ->  A. x  e.  A  ph ) )
 
Theoremssrexv 3244* Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  ->  E. x  e.  B  ph ) )
 
Theoremralss 3245* Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  -> 
 ph ) ) )
 
Theoremrexss 3246* Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
 
Theoremss2ab 3247 Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
 |-  ( { x  |  ph
 }  C_  { x  |  ps }  <->  A. x ( ph  ->  ps ) )
 
Theoremabss 3248* Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  |  ph
 }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
 
Theoremssab 3249* Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x ( x  e.  A  ->  ph )
 )
 
Theoremssabral 3250* The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x  e.  A  ph )
 
Theoremss2abi 3251 Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
 |-  ( ph  ->  ps )   =>    |-  { x  |  ph }  C_  { x  |  ps }
 
Theoremss2abdv 3252* Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  |  ps }  C_ 
 { x  |  ch } )
 
Theoremabssdv 3253* Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  ( ps  ->  x  e.  A ) )   =>    |-  ( ph  ->  { x  |  ps }  C_  A )
 
Theoremabssi 3254* Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  x  e.  A )   =>    |- 
 { x  |  ph } 
 C_  A
 
Theoremss2rab 3255 Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
 |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps }  <->  A. x  e.  A  ( ph  ->  ps )
 )
 
Theoremrabss 3256* Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  e.  A  |  ph }  C_  B 
 <-> 
 A. x  e.  A  ( ph  ->  x  e.  B ) )
 
Theoremssrab 3257* Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( B  C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
 
Theoremssrabdv 3258* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
 |-  ( ph  ->  B  C_  A )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ps )   =>    |-  ( ph  ->  B  C_ 
 { x  e.  A  |  ps } )
 
Theoremrabssdv 3259* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
 |-  ( ( ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  B )
 
Theoremss2rabdv 3260* Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  { x  e.  A  |  ch }
 )
 
Theoremss2rabi 3261 Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |- 
 { x  e.  A  |  ph }  C_  { x  e.  A  |  ps }
 
Theoremrabss2 3262* Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  { x  e.  A  |  ph }  C_  { x  e.  B  |  ph } )
 
Theoremssab2 3263* Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
 |- 
 { x  |  ( x  e.  A  /\  ph ) }  C_  A
 
Theoremssrab2 3264* Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.)
 |- 
 { x  e.  A  |  ph }  C_  A
 
Theoremssrab3 3265* Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  B  =  { x  e.  A  |  ph }   =>    |-  B  C_  A
 
Theoremssrabeq 3266* If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
 |-  ( V  C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph
 } )
 
Theoremrabssab 3267 A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |- 
 { x  e.  A  |  ph }  C_  { x  |  ph }
 
Theoremuniiunlem 3268* A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
 |-  ( A. x  e.  A  B  e.  D  ->  ( A. x  e.  A  B  e.  C  <->  { y  |  E. x  e.  A  y  =  B }  C_  C ) )
 
2.1.13  The difference, union, and intersection of two classes
 
2.1.13.1  The difference of two classes
 
Theoremdfdif3 3269* Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
 |-  ( A  \  B )  =  { x  e.  A  |  A. y  e.  B  x  =/=  y }
 
Theoremdifeq1 3270 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C ) )
 
Theoremdifeq2 3271 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12 3272 Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeq1i 3273 Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( A  \  C )  =  ( B  \  C )
 
Theoremdifeq2i 3274 Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( C  \  A )  =  ( C  \  B )
 
Theoremdifeq12i 3275 Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  \  C )  =  ( B  \  D )
 
Theoremdifeq1d 3276 Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  C ) )
 
Theoremdifeq2d 3277 Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12d 3278 Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeqri 3279* Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( x  e.  A  /\  -.  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  \  B )  =  C
 
Theoremnfdif 3280 Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A 
 \  B )
 
Theoremeldifi 3281 Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  \  C )  ->  A  e.  B )
 
Theoremeldifn 3282 Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
 |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )
 
Theoremelndif 3283 A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
 |-  ( A  e.  B  ->  -.  A  e.  ( C  \  B ) )
 
Theoremdifdif 3284 Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
 |-  ( A  \  ( B  \  A ) )  =  A
 
Theoremdifss 3285 Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  \  B )  C_  A
 
Theoremdifssd 3286 A difference of two classes is contained in the minuend. Deduction form of difss 3285. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  \  B )  C_  A )
 
Theoremdifss2 3287 If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  ( B  \  C )  ->  A  C_  B )
 
Theoremdifss2d 3288 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3287. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  ( B  \  C ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremssdifss 3289 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  B )
 
Theoremddifnel 3290* Double complement under universal class. The hypothesis corresponds to stability of membership in 
A, which is weaker than decidability (see dcstab 845). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3291) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that  A is a subset of  _V  \  ( _V  \  A ), see ddifss 3397. (Contributed by Jim Kingdon, 21-Jul-2018.)
 |-  ( -.  x  e.  ( _V  \  A )  ->  x  e.  A )   =>    |-  ( _V  \  ( _V  \  A ) )  =  A
 
Theoremddifstab 3291* A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
 |-  ( ( _V  \  ( _V  \  A ) )  =  A  <->  A. xSTAB  x  e.  A )
 
Theoremssconb 3292 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
 |-  ( ( A  C_  C  /\  B  C_  C )  ->  ( A  C_  ( C  \  B )  <->  B  C_  ( C  \  A ) ) )
 
Theoremsscon 3293 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdif 3294 Difference law for subsets. (Contributed by NM, 28-May-1998.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremssdifd 3295 If  A is contained in  B, then  ( A 
\  C ) is contained in  ( B  \  C ). Deduction form of ssdif 3294. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremsscond 3296 If  A is contained in  B, then  ( C 
\  B ) is contained in  ( C  \  A ). Deduction form of sscon 3293. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdifssd 3297 If  A is contained in  B, then  ( A 
\  C ) is also contained in  B. Deduction form of ssdifss 3289. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  B )
 
Theoremssdif2d 3298 If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C 
 C_  D )   =>    |-  ( ph  ->  ( A  \  D ) 
 C_  ( B  \  C ) )
 
Theoremraldifb 3299 Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
 |-  ( A. x  e.  A  ( x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B ) ph )
 
2.1.13.2  The union of two classes
 
Theoremelun 3300 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e.  ( B  u.  C )  <->  ( A  e.  B  \/  A  e.  C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >