Theorem List for Intuitionistic Logic Explorer - 3201-3300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ssriv 3201* |
Inference based on subclass definition. (Contributed by NM,
5-Aug-1993.)
|
   |
| |
| Theorem | ssrd 3202 |
Deduction based on subclass definition. (Contributed by Thierry Arnoux,
8-Mar-2017.)
|
       
  
  |
| |
| Theorem | ssrdv 3203* |
Deduction based on subclass definition. (Contributed by NM,
15-Nov-1995.)
|
 
  
  |
| |
| Theorem | sstr2 3204 |
Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17.
(Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon,
14-Jun-2011.)
|
 
   |
| |
| Theorem | sstr 3205 |
Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by
NM, 5-Sep-2003.)
|
     |
| |
| Theorem | sstri 3206 |
Subclass transitivity inference. (Contributed by NM, 5-May-2000.)
|
 |
| |
| Theorem | sstrd 3207 |
Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.)
|
       |
| |
| Theorem | sstrid 3208 |
Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
|
     |
| |
| Theorem | sstrdi 3209 |
Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim,
3-Jun-2011.)
|
     |
| |
| Theorem | sylan9ss 3210 |
A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
(Proof shortened by Andrew Salmon, 14-Jun-2011.)
|
         |
| |
| Theorem | sylan9ssr 3211 |
A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
|
         |
| |
| Theorem | eqss 3212 |
The subclass relationship is antisymmetric. Compare Theorem 4 of
[Suppes] p. 22. (Contributed by NM,
5-Aug-1993.)
|
 
   |
| |
| Theorem | eqssi 3213 |
Infer equality from two subclass relationships. Compare Theorem 4 of
[Suppes] p. 22. (Contributed by NM,
9-Sep-1993.)
|
 |
| |
| Theorem | eqssd 3214 |
Equality deduction from two subclass relationships. Compare Theorem 4
of [Suppes] p. 22. (Contributed by NM,
27-Jun-2004.)
|
       |
| |
| Theorem | eqrd 3215 |
Deduce equality of classes from equivalence of membership. (Contributed
by Thierry Arnoux, 21-Mar-2017.)
|
       
     |
| |
| Theorem | eqelssd 3216* |
Equality deduction from subclass relationship and membership.
(Contributed by AV, 21-Aug-2022.)
|
    
    |
| |
| Theorem | ssid 3217 |
Any class is a subclass of itself. Exercise 10 of [TakeutiZaring]
p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew
Salmon, 14-Jun-2011.)
|
 |
| |
| Theorem | ssidd 3218 |
Weakening of ssid 3217. (Contributed by BJ, 1-Sep-2022.)
|
   |
| |
| Theorem | ssv 3219 |
Any class is a subclass of the universal class. (Contributed by NM,
31-Oct-1995.)
|
 |
| |
| Theorem | sseq1 3220 |
Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof
shortened by Andrew Salmon, 21-Jun-2011.)
|
     |
| |
| Theorem | sseq2 3221 |
Equality theorem for the subclass relationship. (Contributed by NM,
25-Jun-1998.)
|
     |
| |
| Theorem | sseq12 3222 |
Equality theorem for the subclass relationship. (Contributed by NM,
31-May-1999.)
|
   
   |
| |
| Theorem | sseq1i 3223 |
An equality inference for the subclass relationship. (Contributed by
NM, 18-Aug-1993.)
|

  |
| |
| Theorem | sseq2i 3224 |
An equality inference for the subclass relationship. (Contributed by
NM, 30-Aug-1993.)
|

  |
| |
| Theorem | sseq12i 3225 |
An equality inference for the subclass relationship. (Contributed by
NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
|
   |
| |
| Theorem | sseq1d 3226 |
An equality deduction for the subclass relationship. (Contributed by
NM, 14-Aug-1994.)
|
   
   |
| |
| Theorem | sseq2d 3227 |
An equality deduction for the subclass relationship. (Contributed by
NM, 14-Aug-1994.)
|
   
   |
| |
| Theorem | sseq12d 3228 |
An equality deduction for the subclass relationship. (Contributed by
NM, 31-May-1999.)
|
     
   |
| |
| Theorem | eqsstri 3229 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 16-Jul-1995.)
|
 |
| |
| Theorem | eqsstrri 3230 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 19-Oct-1999.)
|
 |
| |
| Theorem | sseqtri 3231 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 28-Jul-1995.)
|
 |
| |
| Theorem | sseqtrri 3232 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 4-Apr-1995.)
|
 |
| |
| Theorem | eqsstrd 3233 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 25-Apr-2004.)
|
       |
| |
| Theorem | eqsstrrd 3234 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 25-Apr-2004.)
|
       |
| |
| Theorem | sseqtrd 3235 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 25-Apr-2004.)
|
       |
| |
| Theorem | sseqtrrd 3236 |
Substitution of equality into a subclass relationship. (Contributed by
NM, 25-Apr-2004.)
|
       |
| |
| Theorem | 3sstr3i 3237 |
Substitution of equality in both sides of a subclass relationship.
(Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt,
26-Jan-2007.)
|
 |
| |
| Theorem | 3sstr4i 3238 |
Substitution of equality in both sides of a subclass relationship.
(Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt,
26-Jan-2007.)
|
 |
| |
| Theorem | 3sstr3g 3239 |
Substitution of equality into both sides of a subclass relationship.
(Contributed by NM, 1-Oct-2000.)
|
     |
| |
| Theorem | 3sstr4g 3240 |
Substitution of equality into both sides of a subclass relationship.
(Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt,
26-Jan-2007.)
|
     |
| |
| Theorem | 3sstr3d 3241 |
Substitution of equality into both sides of a subclass relationship.
(Contributed by NM, 1-Oct-2000.)
|
         |
| |
| Theorem | 3sstr4d 3242 |
Substitution of equality into both sides of a subclass relationship.
(Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt,
26-Jan-2007.)
|
         |
| |
| Theorem | eqsstrid 3243 |
B chained subclass and equality deduction. (Contributed by NM,
25-Apr-2004.)
|
     |
| |
| Theorem | eqsstrrid 3244 |
B chained subclass and equality deduction. (Contributed by NM,
25-Apr-2004.)
|
     |
| |
| Theorem | sseqtrdi 3245 |
A chained subclass and equality deduction. (Contributed by NM,
25-Apr-2004.)
|
     |
| |
| Theorem | sseqtrrdi 3246 |
A chained subclass and equality deduction. (Contributed by NM,
25-Apr-2004.)
|
     |
| |
| Theorem | sseqtrid 3247 |
Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim,
3-Jun-2011.)
|
     |
| |
| Theorem | sseqtrrid 3248 |
Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim,
3-Jun-2011.)
|
     |
| |
| Theorem | eqsstrdi 3249 |
A chained subclass and equality deduction. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
     |
| |
| Theorem | eqsstrrdi 3250 |
A chained subclass and equality deduction. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
     |
| |
| Theorem | eqimss 3251 |
Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.)
(Proof shortened by Andrew Salmon, 21-Jun-2011.)
|

  |
| |
| Theorem | eqimss2 3252 |
Equality implies the subclass relation. (Contributed by NM,
23-Nov-2003.)
|

  |
| |
| Theorem | eqimssi 3253 |
Infer subclass relationship from equality. (Contributed by NM,
6-Jan-2007.)
|
 |
| |
| Theorem | eqimss2i 3254 |
Infer subclass relationship from equality. (Contributed by NM,
7-Jan-2007.)
|
 |
| |
| Theorem | nssne1 3255 |
Two classes are different if they don't include the same class.
(Contributed by NM, 23-Apr-2015.)
|
  
  |
| |
| Theorem | nssne2 3256 |
Two classes are different if they are not subclasses of the same class.
(Contributed by NM, 23-Apr-2015.)
|
  
  |
| |
| Theorem | nssr 3257* |
Negation of subclass relationship. One direction of Exercise 13 of
[TakeutiZaring] p. 18.
(Contributed by Jim Kingdon, 15-Jul-2018.)
|
       |
| |
| Theorem | nelss 3258 |
Demonstrate by witnesses that two classes lack a subclass relation.
(Contributed by Stefan O'Rear, 5-Feb-2015.)
|
  
  |
| |
| Theorem | ssrexf 3259 |
Restricted existential quantification follows from a subclass
relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
      
    |
| |
| Theorem | ssrmof 3260 |
"At most one" existential quantification restricted to a subclass.
(Contributed by Thierry Arnoux, 8-Oct-2017.)
|
      
    |
| |
| Theorem | ssralv 3261* |
Quantification restricted to a subclass. (Contributed by NM,
11-Mar-2006.)
|
  
    |
| |
| Theorem | ssrexv 3262* |
Existential quantification restricted to a subclass. (Contributed by
NM, 11-Jan-2007.)
|
  
    |
| |
| Theorem | ralss 3263* |
Restricted universal quantification on a subset in terms of superset.
(Contributed by Stefan O'Rear, 3-Apr-2015.)
|
  
 
    |
| |
| Theorem | rexss 3264* |
Restricted existential quantification on a subset in terms of superset.
(Contributed by Stefan O'Rear, 3-Apr-2015.)
|
  
 
    |
| |
| Theorem | ss2ab 3265 |
Class abstractions in a subclass relationship. (Contributed by NM,
3-Jul-1994.)
|
  
        |
| |
| Theorem | abss 3266* |
Class abstraction in a subclass relationship. (Contributed by NM,
16-Aug-2006.)
|
  
      |
| |
| Theorem | ssab 3267* |
Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
|
         |
| |
| Theorem | ssabral 3268* |
The relation for a subclass of a class abstraction is equivalent to
restricted quantification. (Contributed by NM, 6-Sep-2006.)
|
      |
| |
| Theorem | ss2abi 3269 |
Inference of abstraction subclass from implication. (Contributed by NM,
31-Mar-1995.)
|
       |
| |
| Theorem | ss2abdv 3270* |
Deduction of abstraction subclass from implication. (Contributed by NM,
29-Jul-2011.)
|
           |
| |
| Theorem | abssdv 3271* |
Deduction of abstraction subclass from implication. (Contributed by NM,
20-Jan-2006.)
|
         |
| |
| Theorem | abssi 3272* |
Inference of abstraction subclass from implication. (Contributed by NM,
20-Jan-2006.)
|
     |
| |
| Theorem | ss2rab 3273 |
Restricted abstraction classes in a subclass relationship. (Contributed
by NM, 30-May-1999.)
|
      
   |
| |
| Theorem | rabss 3274* |
Restricted class abstraction in a subclass relationship. (Contributed
by NM, 16-Aug-2006.)
|
    
   |
| |
| Theorem | ssrab 3275* |
Subclass of a restricted class abstraction. (Contributed by NM,
16-Aug-2006.)
|
        |
| |
| Theorem | ssrabdv 3276* |
Subclass of a restricted class abstraction (deduction form).
(Contributed by NM, 31-Aug-2006.)
|
           |
| |
| Theorem | rabssdv 3277* |
Subclass of a restricted class abstraction (deduction form).
(Contributed by NM, 2-Feb-2015.)
|
    
    |
| |
| Theorem | ss2rabdv 3278* |
Deduction of restricted abstraction subclass from implication.
(Contributed by NM, 30-May-2006.)
|
        
    |
| |
| Theorem | ss2rabi 3279 |
Inference of restricted abstraction subclass from implication.
(Contributed by NM, 14-Oct-1999.)
|
         |
| |
| Theorem | rabss2 3280* |
Subclass law for restricted abstraction. (Contributed by NM,
18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
|
       |
| |
| Theorem | ssab2 3281* |
Subclass relation for the restriction of a class abstraction.
(Contributed by NM, 31-Mar-1995.)
|
     |
| |
| Theorem | ssrab2 3282* |
Subclass relation for a restricted class. (Contributed by NM,
19-Mar-1997.)
|
   |
| |
| Theorem | ssrab3 3283* |
Subclass relation for a restricted class abstraction. (Contributed by
Jonathan Ben-Naim, 3-Jun-2011.)
|
   |
| |
| Theorem | ssrabeq 3284* |
If the restricting class of a restricted class abstraction is a subset
of this restricted class abstraction, it is equal to this restricted
class abstraction. (Contributed by Alexander van der Vekens,
31-Dec-2017.)
|
  

   |
| |
| Theorem | rabssab 3285 |
A restricted class is a subclass of the corresponding unrestricted class.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|
     |
| |
| Theorem | uniiunlem 3286* |
A subset relationship useful for converting union to indexed union using
dfiun2 or dfiun2g and intersection to indexed intersection using
dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario
Carneiro, 26-Sep-2015.)
|
          |
| |
| 2.1.13 The difference, union, and intersection
of two classes
|
| |
| 2.1.13.1 The difference of two
classes
|
| |
| Theorem | dfdif3 3287* |
Alternate definition of class difference. Definition of relative set
complement in Section 2.3 of [Pierik], p.
10. (Contributed by BJ and
Jim Kingdon, 16-Jun-2022.)
|
 
    |
| |
| Theorem | difeq1 3288 |
Equality theorem for class difference. (Contributed by NM,
10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
|
  
    |
| |
| Theorem | difeq2 3289 |
Equality theorem for class difference. (Contributed by NM,
10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
|
  
    |
| |
| Theorem | difeq12 3290 |
Equality theorem for class difference. (Contributed by FL,
31-Aug-2009.)
|
    
    |
| |
| Theorem | difeq1i 3291 |
Inference adding difference to the right in a class equality.
(Contributed by NM, 15-Nov-2002.)
|
 
   |
| |
| Theorem | difeq2i 3292 |
Inference adding difference to the left in a class equality.
(Contributed by NM, 15-Nov-2002.)
|
 
   |
| |
| Theorem | difeq12i 3293 |
Equality inference for class difference. (Contributed by NM,
29-Aug-2004.)
|
 
   |
| |
| Theorem | difeq1d 3294 |
Deduction adding difference to the right in a class equality.
(Contributed by NM, 15-Nov-2002.)
|
         |
| |
| Theorem | difeq2d 3295 |
Deduction adding difference to the left in a class equality.
(Contributed by NM, 15-Nov-2002.)
|
         |
| |
| Theorem | difeq12d 3296 |
Equality deduction for class difference. (Contributed by FL,
29-May-2014.)
|
           |
| |
| Theorem | difeqri 3297* |
Inference from membership to difference. (Contributed by NM,
17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
|
  
  
 |
| |
| Theorem | nfdif 3298 |
Bound-variable hypothesis builder for class difference. (Contributed by
NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
|
         |
| |
| Theorem | eldifi 3299 |
Implication of membership in a class difference. (Contributed by NM,
29-Apr-1994.)
|
  
  |
| |
| Theorem | eldifn 3300 |
Implication of membership in a class difference. (Contributed by NM,
3-May-1994.)
|
     |