ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfun Unicode version

Theorem nfun 3278
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfun.1  |-  F/_ x A
nfun.2  |-  F/_ x B
Assertion
Ref Expression
nfun  |-  F/_ x
( A  u.  B
)

Proof of Theorem nfun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-un 3120 . 2  |-  ( A  u.  B )  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
2 nfun.1 . . . . 5  |-  F/_ x A
32nfcri 2302 . . . 4  |-  F/ x  y  e.  A
4 nfun.2 . . . . 5  |-  F/_ x B
54nfcri 2302 . . . 4  |-  F/ x  y  e.  B
63, 5nfor 1562 . . 3  |-  F/ x
( y  e.  A  \/  y  e.  B
)
76nfab 2313 . 2  |-  F/_ x { y  |  ( y  e.  A  \/  y  e.  B ) }
81, 7nfcxfr 2305 1  |-  F/_ x
( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 698    e. wcel 2136   {cab 2151   F/_wnfc 2295    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-un 3120
This theorem is referenced by:  nfsuc  4386  nfdju  7007
  Copyright terms: Public domain W3C validator