ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfun Unicode version

Theorem nfun 3289
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfun.1  |-  F/_ x A
nfun.2  |-  F/_ x B
Assertion
Ref Expression
nfun  |-  F/_ x
( A  u.  B
)

Proof of Theorem nfun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-un 3131 . 2  |-  ( A  u.  B )  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
2 nfun.1 . . . . 5  |-  F/_ x A
32nfcri 2311 . . . 4  |-  F/ x  y  e.  A
4 nfun.2 . . . . 5  |-  F/_ x B
54nfcri 2311 . . . 4  |-  F/ x  y  e.  B
63, 5nfor 1572 . . 3  |-  F/ x
( y  e.  A  \/  y  e.  B
)
76nfab 2322 . 2  |-  F/_ x { y  |  ( y  e.  A  \/  y  e.  B ) }
81, 7nfcxfr 2314 1  |-  F/_ x
( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 708    e. wcel 2146   {cab 2161   F/_wnfc 2304    u. cun 3125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-un 3131
This theorem is referenced by:  nfsuc  4402  nfdju  7031
  Copyright terms: Public domain W3C validator